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Resumo

O desenvolvimento de métodos de aprendizagem automática e a sua adequação a problemas clínicos têm

possibilitado a criação de novas abordagens terapêuticas que fazem perspetivar a aplicação de soluções de

engenharia para modelar integradamente sistemas fisiológicos multi-escalares, fornecendo conhecimento

profundo e abrangente do funcionamento de sistemas biológicos. Os sistemas adaptativos de apoio à

decisão clínica para a medicina personalizada sofrem de um problema de elevada dimensionalidade, já

que contemplam o ajuste de muitos parâmetros. Este relatório apresenta o estudo teórico e a explo-

ração prática de técnicas de aprendizagem não supervisionada, bem como a revisão de metodologias de

agrupamento capazes de lidar com dados de grande dimensão. As qualidades das abordagens tandem

tradicionais são debatidas através da avaliação do seu desempenho em dados sintéticos e reais. A pesquisa

levada a cabo abre espaço à criação de novas estratégias integradas que conjugam a redução do espaço de

variáveis com a estratificação dos objetos para maximizar a interpretabilidade dos dados e facilitar a sua

análise. Neste trabalho um modelo difuso entropicamente regularizado é incorporado numa metodolo-

gia de clustering e análise de componentes principais disjuntos e é comparado com outras metodologias

de última geração, mostrando trazer mais intuição à apreciação dos resultados fruto da palete de cores

atribuída às observações com base nos graus de pertença aos respetivos grupos. É também apresentada

uma nova ferramenta hierárquica capaz de desvendar ciclicamente informação oculta nas camadas mais

profundas dos dados através do rearranjo dos subespaços de variáveis para reavaliação de clusters.

Palavras-chave: Aprendizagem automática, Estatística multivariada, Dados de alta dimensionali-

dade, Análise difusa de agrupamentos, Análise de Componentes Principais.
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Abstract

The development of machine learning methods and their adaptation to clinical problems have enabled

the creation of new therapeutic approaches that lead to the application of engineering solutions to model

multi-scalar physiological systems in an integrated way, providing deep and comprehensive knowledge

of how biological systems work. Adaptive clinical decision support systems for precision medicine suffer

from a problem of high dimensionality, since they contemplate the adjustment of many parameters. This

report presents the theoretical study and the practical exploration of unsupervised learning techniques of

features, as well as the revision of clustering methodologies capable of handling large data. The qualities

of traditional tandem approaches are debated by evaluating their performance in synthetic and real

data. The research carried out opens space for the creation of new integrated strategies that combine the

reduction of the space of variables with the stratification of the objects to maximize the interpretability of

the data and to facilitate their analysis. In this work an entropy-regularized fuzzy model is incorporated

into a clustering and disjoint principal component analysis method and is successfully matched against

other state of the art methodologies, showing improved intuition in the appreciation of the results due

to the color palette attributed to the observations based on their degrees of belonging to the respective

groups. Also presented in this report is a new hierarchical tool capable of cyclically uncover hidden

information in the deeper layers of the data by rearranging subspace data for re-evaluation of clusters.

Keywords: Machine learning, Multivariate statistics, High-dimensional data, Fuzzy cluster analysis,

Principal Component Analysis.
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Notation

For the convenience of the reader the notation and terminology common to all sections is listed here.

I Number of objects, indexed i = 1, ..., I.

J Number of variables, indexed j = 1, ..., J .

P Desired number of clusters of objects, indexed p = 1, ..., P .

Q Desired number of subsets of variables, indexed q = 1, ..., P .

X Standardized data matrix with I objects in rows and J variables in columns.

U I × P binary and row stochastic matrix defining an allocation of the I objects into P clusters.

Matrix entry is 1 if the i-th object belongs to the cluster p, 0 otherwise.

V J ×Q binary and row stochastic matrix defining an allocation of the J variables into Q subsets.

Matrix entry is 1 if the j-th object belongs to the cluster q, 0 otherwise.

X̄ P × J object centroid matrix in the original space defined by X̄ = (UTU)−1UTX.

Z I × J centroid-based data matrix where each object is identified by the corresponding centroid,

Z = UX̄.

W I × K(q) submatrix extracted from the centroid-based data matrix Z where only the original

variables assigned into the q-th column of V are considered.

w
(q)
ik = zij , if vjq = 1, with k = rankJ(q)(j),

where J (q) = j : vjq = 1, K(q) = #J (q) and k = 1, ...,K(q).

A J ×Q matrix of the component loadings where the Q columns are identifying the coefficients of

Q linear combinations such that rank(A) = Q, ATA = IQ and
∑J
j=1(ajqajr)

2, for any q and r

(q 6= r).

Y I ×Q component score matrix given by Y = XA where yiq is the value of the i-th object for the

q-th CDPCA component.

Ȳ P ×Q object centroid matrix in the reduced space given by Ȳ = X̄A.

Furthermore, boxes containing definitions, theorems and algorithms are utilized throughout the document

in order to introduce important mathematical concepts and information. These boxes can be easily

distinguished by their background color: yellow, green and blue, respectively.
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The aim of this thesis is to develop novel statistical and machine learning methodologies to deal with

the issues prevalent with precision medicine - a medical model for disease treatment that takes into

account individual variability in genes, environment, and lifestyle for each person. This approach will

allow doctors and researchers to predict more accurately which treatment and prevention strategies for

a particular disease will work better in which groups of people; contrary to a one-size-fits-all approach,

in which strategies take less consideration for the differences between individuals and are developed for

the average person.

This work has a strong relation with real-life applications as discussed in Section 1.1. The layout

of the main goals of this thesis is done in Section 1.2, followed by the main original contributions in

Section 1.3 and a general outline of this document in Section 1.4.

1.1 Context and Motivation

Due to recent progress in data storage and acquisition, an increasing number of databases are emerg-

ing, as computerization in health care services and the amount of available digital data grows at an

unprecedented rate [1]. Considering that the use of computer and information technologies in health care

services can help achieve efficiency and effectiveness in diagnostic decision making, cost economy, and

better risk management and strategic planning in a competitive environment [2], it becomes increasingly

important to retrieve knowledge from these data repositories, especially while health care organizations

are facing a major challenge on improving the quality of the service delivered, while maintaining the costs

affordable [1].

The rise of genomics and the accumulation of heterogeneous amounts of biomedical data is inciting the

development of new systems-based approaches to life sciences, creating a substantial need for flexible data

modeling and analysis tools to help retain useful insights from the overwhelming size and dimension of the

obtained data. The computing mechanism of distinguishing patterns in large data sets is denominated

data mining and involves methods crossing statistics, machine learning and database systems [3]. The

process encompasses the extraction of data patterns through the use of intelligent methods with the goal

of distilling relevant information from a data set and transform it into an interpretable structure for

further use [4]. The use of data mining techniques on clinical data has the potential to improve decision

making in diagnosis, find ways of preventing some diseases, towards a better patients’ care.

Personalized medical therapies hold the promise of a tailored service and treatment based on in-

formation that is patient-specific. Modeling complex pathologies like cancer and contributing to this

therapy’s optimization constitutes a great challenge in systems medicine, whose results are expected to

have high social and economical impact. In this context, biomarkers information and indicators of disease

progression can lead to the identification of co-variables related to the disease outcome, helping unravel

relationships in the input data space to diminish the complexity of the task at hand and elucidate the

intricate connections of different types of epigenomic abnormalities.
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1.2 Objectives

Although some efforts of applying engineering methods to model multi-scale physiological systems in an

integrative way have been made [5–9], a definition of the best mathematical strategy, its computational

implementation and its effective application to real clinical problems, such as patient profiling and therapy

optimization, remain elusive and constitute the main motivation and innovative nature of this topic of

research.

This report reviews the problems in prognostic medicine where statistical and machine learning meth-

ods techniques that tackle high-dimensional clinical data may be of use. The conducted research opens

room to the creation of novel modeling and decision techniques to be used in systems medicine conju-

gating the reduction of the variables space and the stratification of objects, and able to maximize the

interpretability of the data and consequently improve analysis.

As the discovery of disease subtypes via the exploration of gene expression data using unsupervised

clustering methodologies is one of the most important research areas in personalized medicine, one of

the other goals settles on producing new frameworks capable of highlighting information hidden in inner

layers of data. The otherwise obscured knowledge can then be used to, for example, extrapolate new

behaviors through the analysis of partitions of different types of cancers of The Cancer Genome Atlas 1.

1.3 Original Contributions

An entropy-regularized fuzzy model for the clustering and disjoint principal component analysis method

is developed and matched against other state of the art methods. The introduction of a relaxation in the

object assignment phase permits a more just classification and more accurate interpretation. A regular-

ization is performed following an entropy approach as it allows to ditch the cryptic fuzzyfication tuning

parameter and adds missing meaningful physical properties to the simpler fuzzy k-means methodology.

The new model is tested and compared to others introduced in Chapters 3 and 4.

A technique is developed to disclose otherwise obstructed information in the data following a nested,

cyclical pipeline that digs deeper and deeper into the hidden layers of the data and continuously rearranges

the linear combinations of the features to secure the optimal between cluster deviance of the object clusters

and subclusters. The new technique is applied to real clinical data and compared to a similar tandem

approach.

1.4 Document Outline

A brief overview of the most relevant state of the art methods can be read in Chapter 2. The qualities

of traditional tandem approaches are disputed using synthetic and real data, and comparisons are made

to two other solutions in Chapter 3. Chapter 4 introduces a classical cluster partition approach to an

integrated dissection of diseases and individuals into homogeneous groups with similar survival responses,

1More about TCGA at https://cancergenome.nih.gov/
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and sets the foundation for the proposed methodologies detailed in Chapter 5. Chapter 6 reveals the

analysis of several data sets and the performance results of the new frameworks. The final conclusions

are taken and further possible lines of developments are suggested in Chapter 7.
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This chapter provides a brief overview of the most relevant methods to perform dimensionality

reduction and clustering of objects.

To combat the curse of dimensionality prevalent in high-dimensional clinical data [10], where the

number of attributes clearly outnumbers the number of samples, the original data space needs to be

reconfigured to be able to be expressed in a lower-dimensional setup. As the data grows bigger in size the

interpretability concern becomes ever more relevant and there is a need to cleverly generate the feature

subset. Dimensionality reduction is the process of reducing the number of variables under consideration

by obtaining a set of principal relevant features, and can be divided into feature selection and feature

extraction methods [11].

2.1 Classification of Feature Selection Methods

Feature selection or variable subset selection methods can be used in data preprocessing to achieve efficient

data reduction as they attempt to find a subset of non-redundant features to construct a model whose

simplification makes them easier to analyze and interpret. The reduction of complexity allows for faster

training times, less propension to overfitting, and minimizes the curse of dimensionality [12]. These

algorithms are separated in three classes: filters, wrappers, embedded/hybrid methods [13, 14]. A brief

overview of them follows.

2.1.1 Filter Methods

Filters incorporate an independent measure for evaluating subsets without involving any subsequent

learning algorithm, discarding the least interesting variables according to said independent criterion.

The developed measures for feature filtering can be classified into information, distance, consistency,

similarity, and statistical measures [13].

Only after it finds the best features can the employed data modeling algorithm use them, Fig. 2.1.

Despite this approach being computationally inexpensive, the method can miss features that are not

useful by themselves but can be very useful when in conjunction with others, making this the worst

performing class of methods [14].

Figure 2.1: Filter method for feature selection.

Filters can operate in two ways: they can evaluate a single feature at a time - in which case the

method is univariate - or they can evaluate the entire subset - multivariate methods [15]. Feature subset

generation for multivariate filters depends on the search strategy and, although there are many search

strategies, the four usual starting points for feature subset generation are: forward selection, backward

elimination, bidirectional selection, and heuristic feature subset selection.
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2.1.2 Wrapper Methods

In wrapper methods, a subset of features is generated and a model is trained according to that genera-

tion [16]. Based on inferences drawn from the previous model, features are added or removed from the

previous subset, Fig. 2.2. This subset adequacy evaluation through a learning algorithm (cross-validation)

reduces the problem to a search problem, and makes this class of feature selection methods the one with

usually the best generalization ability [14].

Figure 2.2: Wrapper method for feature selection.

Regarding high-dimensional data, using search-based or wrapper techniques, and many filter methods

based on redundancy assessment, can be computationally prohibitive due to model training [14].

2.1.3 Embedded and Hybrid Methods

Embedded methods combine filter and wrapper methods to get the best of both worlds - obtain the

low complexity associated with filters and the high accuracy of wrappers [17]. They consider not only

relations between input and output feature, but also indulge in local searches for features that allow better

local discrimination. The method does this by utilizing an independent criterion to decide the optimal

subsets for a known cardinality, and then deciding on a final optimal subset through the evaluation of

the learning algorithm among the optimal subsets across different cardinalities.

Figure 2.3: Embedded method for feature selection.

Note that the features are selected as part of a learning algorithm, meaning the subset of features is

selected in conjunction with the classifier. A shortcoming of this approach is the fact that the selected

subset becomes classifier dependent, meaning they may not work with any other classifier [15]. An

extensive analysis of hybrid models for feature selection can be found in [18].
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2.2 Feature Extraction Techniques

This variable reduction approach is a dimensionality reduction technique that works by performing a

linear or non-linear transformation on the input space to obtain a new, lower-dimensional feature space.

In this section some of these techniques are highlighted. A more extended listing of relevant methodologies

can be found here [14].

2.2.1 Linear Discriminant Analysis

The statistical procedure referred to as LDA is a generalization of Fisher’s linear discriminant, a super-

vised method used to find a linear combination of features that characterizes or separates two or more

classes of objects. It operates on continuous-valued variables and frequently uses a multivariate Gaussian

distribution for the class conditional density. Assuming examples within one class or the other are nor-

mally distributed (linearity) it analytically determines the best separating hyperplane between the classes

from their means and variances. This method aims to find a projection A that maximizes the ratio of

between-class variance Sb to the within-class variance Sw in any particular data set (Fisher’s criterion),

arg max
A

|ASbAT |
|ASwAT |

.

In LDA, data sets can be transformed and test vectors can be classified in the transformed space by a

different approach: class-independent transformation [19]. In this approach, each class is considered as a

separate class against all others, and involves maximizing the ratio of the overall variance to within class

variance. Because there is only one optimizing criterion used all data points irrespective of their class

identity, will be transformed by the same operation.

Exploratory analysis is engaged by applying the initially described method to the Iris dataset. The

linear discriminants’ (LD) loadings are explicit in Table 2.2 and a confusion matrix fabricated after

performing the most discriminative linear projection between classes is shown in Table 2.3. The tests

were done using the lda function of the MASS package in R.

Table 2.1: Iris dataset group mean.

Species Attributes [cm]

Sepal Length Sepal Width Petal Length Petal Width

Setosa 5.006 3.428 1.462 0.246
Versicolor 5.936 2.770 4.260 1.326
Virginica 6.588 2.974 5.552 2.026

The simplicity of the dataset chosen allows for a clearer interpretation of the results and facilitates

the comparison with other analysis typologies. It is easily attested that the classification produced was

almost ideal, but linear discriminant analysis holds some limitations not reproducible with the chosen

dataset. Because it is limited by the number of classes on the generation of the number of discriminative

axes, when facing a situation where the number of features outnumbers the number of class labels the
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Table 2.2: Linear discriminants’ coefficients.

Attributes Linear Discriminants

Component 1 Component 2

Sepal Length -0.829 0.024
Sepal Width -1.534 2.165
Petal Length 2.201 -0.932
Petal Width 2.810 2.839

Table 2.3: Confusion matrix after LDA’s projection.

Species Predicted Species

Setosa Versicolor Virginica

Setosa 50 0 0
Versicolor 0 48 2
Virginica 0 1 49

loss of information becomes too noticeable, and the classification accuracy inherent to the use of this

technique plunges, bearing this method unusable.

Due to computational limitations it is commonly believed that a direct LDA solution for high-

dimensional data is infeasible. However, modifications of the simultaneous diagonalization procedure

permit to discard the null space of Sb – which carries no discriminative information – and to keep the

null space of Sw, which is very important for classification. The result is a unified LDA algorithm that

gives an exact solution to Fisher’s criterion whether or not Sw is singular (case when data matrices are

degenerate) [20].

2.2.2 Principal Component Analysis

The method also mentioned to as PCA is an unsupervised feature extraction method and a statistical

procedure that uses an orthogonal transformation to convert a set of values of possibly correlated variables

into a set of observations of linearly uncorrelated variables called principal components. This transfor-

mation generates a new coordinate system whose axes can project the data into a lower dimensional

space, defined in such a way that the first principal component has the largest possible variance, assuring

minimum information loss. Each succeeding component, in turn, has the highest variance possible under

the constraint that it is orthogonal to the preceding components [21].

PCA as an exploratory tool to develop predictive models can be achieved by eigendecomposition of a

data correlation or covariance, or by singular value decomposition of the centered and normalized data

matrix [22]. More precisely, letting p be the number of dimensions of each data sample, N the number

of samples, and X the N × p data matrix, the symmetric covariance matrix Cx can be eigendecomposed

to

Cx = UVUT , (2.1)
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where the columns of U contain ud eigenvectors and V = diag(λ1, ..., λd) with λi the i-th eigenvalue.

Sorting the resulting matrix columns by decreasing eigenvalues results in the eigenvector or projection

matrix E. The dimension reduction can then be obtained by projecting X on the recently calculated

orthogonal eigenvectors, and selecting the biggest p′ components to represent the data. This selection

allows the data to be molded into a lower dimensional feature space since p′ < p, and the new repre-

sentation of the data can be achieved by a N × p′ matrix Y. An important property of this algebraic

application is that the resulting principal components are obligatorily orthogonal and their variance are

given by the corresponding eigenvalue.

After applying this methodology to the Iris dataset the principal components (PC) are generated

and displayed in Table 2.4, and their respective variances is detailed in Table 2.5. This information was

obtained applying the PCA method available from the FactorMineR package.

Table 2.4: Principal components’ loadings.

Attributes Component

PC1 PC2 PC3 PC4

Sepal Length 0.5211 -0.3774 0.7196 0.2613
Sepal Width -0.2693 -0.9233 -0.2444 -0.1235
Petal Length 0.5804 -0.0245 -0.1421 -0.8014
Petal Width 0.5646 -0.0669 -0.6343 0.5236

Table 2.5: Principal components’ variance.

Measure Component

PC1 PC2 PC3 PC4

Standard Deviation 1.7084 0.9560 0.3831 0.1439
Proportion of Variance (%) 73.3 22.7 3.6 0.4
Cumulative Proportion (%) 73.3 96.0 99.6 100

The first two principal components are responsible for explaining approximately 95% of the variance.

In a low dimensional space such as this one, this measure carries some significance and the importance

of the first two principal components can be assumed to be high, and sufficient to explain closely enough

the entirety of the original data. In Fig. 2.4, a visualization technique known as biplot is used to draw

a low dimensional graph in order to find patterns hidden on data and to interpret relationships between

samples and variables. The visualization was obtained using the ggbiplot package in R.

The summarization in the same plane of the classified data and the loadings’ weights of Table 2.4

associated with a certain input variable allow by visual inspection to conclude that the loadings related

to the Petal have a strong negative influence in the first component, but carry no relevance in the second.

Thus not having almost any impact on the growth of the explained variance from the the previous

component to the latter.

Comparing to LDA, the supervised learning mechanism holds final results closer to the truth due to

the existence of a priori knowledge, as explained in Subsection 2.2.1. The main difference between the
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Figure 2.4: Biplot of the Iris data after performing PCA.

(a) (b)

Figure 2.5: Iris’ classification after projecting data into a lower-dimension space. (a) Reduced-rank
discriminant analysis; (b) Principal Component Analysis.

two methods is that PCA does more of feature classification, reshaping and relocating the original data

sets when transformed to a different space, while LDA concentrates on data classification, not changing

the location but simply trying to provide more class separability and draw a decision region between the

given classes.

There is no unique way of determining the optimal number of principal components to keep, as the

application of PCA is intensely dependent on the problem we face and the solution we aim at achieving.

Despite all of that, statistically sane solutions to this issue have been presented, namely cross-validation

relating to covariance structure modelling methodologies such as the one seen in [23] and [24].

One term often confused with the one analyzed in this section is Factor Analysis; more specifically

the notion of Exploratory Factor Analysis (EFA) - the attempt to discover the nature of the constructs

influencing a set of responses - creates some confusion. The two can be distinguished because they

are based on different models. The first difference is that the direction of influence is reversed: EFA

assumes that the measured responses are based on the underlying factors while in PCA the principal

components are based on the measured responses. The second difference is that EFA assumes that the

variance in the measured variables can be decomposed into that accounted for by common factors and that

accounted for by unique factors, while principal components are simply defined as linear combinations of

the measurements, containing both common and unique variance. For more information regarding this

methodology refer to [25, 26].
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2.2.3 Compendium of Related Feature Extraction Work

Since each principal component is a linear combination of all the original variables, carrying in a practical

situation no nonzero loadings, the component interpretation task is exceptionally toughened. To overcome

this shortcoming, various PCA-based methodologies have been proposed based on the application of new

rotation techniques or by inducing the inclusion of zeros in the obtained components. Regarding the

latter, a Simple Principal Component methodology [27] has been proposed, restricting the components’

loadings to be equal to the constants -1, 0, or 1. In 2003, SCoTLASS [28] was introduced as a maximal

variance approach that obtains components where a L1 bound is introduced on the sum of the absolute

values of the loadings, some becoming null. To avoid outlier corruption of the mathematically optimal

method trying to be found, an alternative weighted generalization of PCA [29] was built to increase

robustness by assigning different weights to data objects based on their estimated relevancy. In the

same tone, Robust Principal Component Analysis (RPCA) is presented to work with grossly corrupted

observations via a decomposition in low-rank and sparse matrices modification on the original statistical

procedure [30]. Later, the notion of sparsity is reinforced in Sparse Principal Component Analysis [31];

idea already expanded in the form of Sparse Principal Component Analysis and Iterative Thresholding,

a new iterative thresholding approach for estimating principal subspaces in the setting where the leading

eigenvectors are sparse. It was proven under a spiked covariance model that the new approach recovers the

principal subspace and leading eigenvectors consistently (and optimally), in a range of high-dimensional

sparse settings [32]. Based on linear methods are other non-linear developments that can be broadly

classified into two groups: those that just serve as some sort of visualization tool, and those that provide

a mapping (from high-dimensional space to low-dimensional embedding or vice versa). Examples include

the Kernel PCA [33] which transports the originally linear operations of PCA in a reproducing kernel

Hilbert space, the locally-linear embedding [34], and others [35, 36].

2.3 Cluster Analysis

The process of grouping a set of objects into classes of similar objects is called clustering. In the field of

machine learning, clustering is a case of unsupervised learning, not relying on predefined classes or class-

labeled training examples, being a form of learning by observation rather than learning by examples. This

adaptable solution that separates data guided by a certain criterion can be viewed as a data compression

technique as it allows for the consideration of singular groups, disparate to the remaining assemblies

under a defined metric. Many clustering algorithms exist in the literature - including the partitioning

and hierarchical methodologies most often used in gene expression data study - and it becomes difficult

to provide a precise categorization of them all because these categories may overlap and a method may

have properties from several categories [37].
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2.3.1 Partitioning Methods

Given a data set of n objects and k clusters to form, a partitioning algorithm organizes the objects into

k clusters (k ≤ n), where each partition represents a cluster formed to optimize an objective partitioning

criterion, like a distance-based measurement, so that the objects within a cluster are “similar”, whereas

the objects of different clusters are “dissimilar” in respect to data set attributes. The most well-known

and commonly applied partitioning methods are k-means, k-medoids, and their variations [4].

Centroid-based Technique The k-means algorithm partitions a set of n objects into a specified-

number k of clusters so that the resulting intracluster similarity is high but the intercluster similarity is

low. In this particular implementation the objective partitioning criterion is based on the mean value of

the objects included in a given cluster, which serves as the base to determine the cluster’s centroid.

Firstly, it randomly selects k of the objects, each of which initially representing a cluster center.

For each of the remaining objects, an object is assigned based on the distance between the object and

the cluster mean to the cluster to which it is the most similar. It then computes the new mean for

each cluster. This iterative process continues until the criterion function converges. Frequently, the

square-error criterion is used, defined as

E =

k∑
i=1

∑
p∈Ci

|p−mi|2, (2.2)

where E is the sum of the square error for all objects in the data set, p is the point in space representing

a given object, and mi is the centroid of cluster Ci (p and mi are multidimensional). This is to say that

for each object in each cluster the distance between the object and its cluster center are squared and

summed. This function tries to make the resulting k clusters as compact and as separate as possible.

There are a few variants of the k-means method, differing in the selection process of the initial k

means, the strategy for the computation of dissimilarity, and the strategies for calculating the cluster

centers. One alternative is to define at the beginning the number of clusters and the initial clustering

through an hierarchical agglomeration algorithm [38], and then use iterative relocation to improve the

clustering.

Representative Object-based Technique One of the faults of the k-means algorithm is its sensitivity

to outliers; an extremely large valued object may substantially distort the distribution of data. This effect

is exacerbated by the use of the square-error function referred earlier in 2.2.

The basis of the k-medoids method for grouping n objects into k clusters starts by selecting, using

one representative object per cluster, actual objects to represent the clusters instead of taking the mean

value of the objects in a cluster as a reference point. Each remaining object is then clustered with the

representative object to which it is the most similar. The partitioning method is then performed based

on the principle of minimizing the sum of the dissimilarities between each object and its corresponding
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reference point. The absolute-error criterion is redefined as

E =

k∑
j=1

∑
p∈Cj

|p− oj |2, (2.3)

where E is now the sum of the absolute error for all objects in the data set, p is the point in space

representing a given object in cluster Cj , and oj is the representative object of Cj . The algorithm

iterates until each representative object is actually the medoid - the most centrally located object - of its

cluster.

Because the medoid is less influenced by extreme values than a mean the method is more robust than

k-means in the presence of noise and outliers. Notwithstanding, its processing is more costly [39], and

note that both methods require the specification of the number of clusters k. In order to combat the

shortfall of the scalability of the Partition Around Medoids (PAM) methodology with large data sets a

sampling-based method called Clustering LARge Applications (CLARA) has been proposed, reducing

the complexity of attribution of medoids significantly [40].

Aside from using the mean or the medoid, other alternative measures of cluster center are also com-

monly used in partitioning methods. An example is the k-modes [41] method, which by replacing the

centroids with modes extends the k-means paradigm to cluster categorical data, uses new dissimilarity

measures to deal with categorical objects, and a frequency-based method to update modes of clusters.

2.3.2 Hierarchical Methods

A hierarchy concept [42] can be formulated following two methods: agglomerative, also referred to as

bottom-up approach, where each object starts from the bottom as a single cluster, being repeatedly

grouped with neighboring clusters to form higher-level concept until all objects fall into a single group;

and divisible, also referred to as a top-down approach, where as opposed to the previous, one single

cluster containing all objects is decomposed into several subclusters until each group consists of only one

object, forming a lower level hierarchy.

The graphical display of the entire process is called the dendrogram and is often viewed as a graph-

ical summary of the data. Usually, we are looking for huge distance vertical jumps that indicate that

something merged at this level should not have been merged, allowing us to deduce that the groups

being combined probably do not belong to the same cluster. Hierarchical clustering has successfully

been employed and able to identify clinically relevant tumor subtypes in several studies [43–45]. The

agglomerative clustering approach is explicit in Algorithm 2.1.

The hierarchical clustering methods vary with respect to the (difficult) choice of the distance metric

and cluster merging known as linkage, which can be application dependent. One commonly used "dis-

tance" between two clusters is the average linkage method - in this method the distance between two

Clusters 1 and 2 is defined as the average of all distances between each member in Cluster 1 and each

member in Cluster 2. Other alternatives are the single linkage (or nearest neighbor) and the complete

linkage (or furthest neighbor). In single linkage method, the distance between Cluster 1 and Cluster 2 is

the shortest distance from any element of Cluster 1 to any element of Cluster 2, while in contrast, the
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Algorithm 2.1. Agglomerative Hierarchical Clustering.

1: Start with a collection C of n single clusters ci containing one object xi

2: Repeat until only one object is left:

(a) use a distance matrix D to find a pair of clusters that are closest to each other,

mini,j D(ci, cj)

(b) merge cluster ci with cj to form a new cluster ci+j

(c) remove ci and cj from the collection C and add ci+j to C

complete linkage method defines the maximum distance from any element of Cluster 1 to any element

of Cluster 2. One important note is that in the presence of outliers, using single linkage the unwanted

values are accounted at last, while using complete linkage the outliers are considered at first. Thus, to

avoid this sensitivity to outliers the average linkage is engaged and the resulting clusters are based on

the average density.

Most of the approaches touched on so far in this section (with the notable exception of single-linkage

hierarchical clustering) are biased towards clusters with convex, hyper-spherical shape. A detailed review

of these clustering algorithms is provided in [46] and more recently in [47].

2.3.3 Other Relevant Clustering Methods

Remaining in the most classical approaches, model based clustering [48] is introduced as a formation

of methods that assume that the data follow a mixture of underlying known probability distributions

and pursuits to optimize the fit between some mathematical model and the data. Here the problems of

selecting a good number of clusters and class-label individuals are realized as model selection problems

in the probability framework [49]. Despite the fact that this approach has a statistically solid foundation

for estimating and selecting a model the distributional assumptions are largely difficult to justify for high

dimensional datasets [50]. Although some transformations can be enforced to mold the data into a known

distribution, a legitimate transformation function is not easily identified. As a result, the methods may

not optimize the likelihood converging to a local minima and end up having spurious clusters due to

the lack of satisfying distributional assumptions; notwithstanding, interesting results have been achieved

when dealing with clinical data [51–53].

Organizing and searching data often relies on the detection of areas where objects form groups with

certain similarities but in high dimensional scenarios all objects appear to be sparse and dissimilar in

many ways (the distance measurement between pairs of points becomes meaningless and the average

density of points anywhere in the data is likely to be low) which prevents common data organization

strategies from being efficient [54]. In data mining, moving forward with more specialized alternatives,

efforts have been made on finding methods for effective cluster analysis in large databases, focusing on

scalability for clustering complex types of data and shapes, and on high-dimensional clustering techniques.

Two ideologies have been brought up closely trailing the hierarchy concepts presented in the previous
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subsection. In dimension-growth subspace clustering, one takes advantage of the downward closure prop-

erty of density to reduce the search space using an a priori style approach - if there are dense units in k

dimensions there are also dense units in all (k−1) dimensional projections. The nature of the bottom-up

approach leads to overlapping clusters, where one instance can be in either none or more clusters, an

advantageous condition in subspace clustering since the clusters often exist in different subspaces and thus

symbolize disparate relationships. These methods determine locality by creating bins for each dimension

and using those bins to form a multidimensional grid, obtaining meaningful results dependent on the

proper tuning of the grid size and the density threshold parameters. These can be particularly difficult

to set, especially since they are used across all of the dimensions in the dataset. A popular adaptation

of this strategy provides data driven, adaptive grid generation to stabilize the results across a range of

density thresholds by determining the cut-points for the bins on each dimension. An example is found

in CLIQUE [55], a density and grid-based subspace clustering methodology that adopts a fixed grid size.

Once the dense subspaces are found they are sorted by the fraction of the dataset covered by the dense

units in the subspace. The subspaces with the greatest coverage are kept and the rest are pruned. The

algorithm then finds adjacent dense grid units in each of the selected subspaces using a depth first search.

Clusters are formed by combining these units using a greedy growth scheme - the algorithm starts with

an arbitrary dense unit and greedily grows a maximal region in each dimension until the union of all

the regions covers the entire cluster. Redundant regions are removed by a repeated procedure where the

smallest redundant regions are discarded until no further maximal region can be removed [56]. Unlike

many applications, CLIQUE can find any number of clusters in any number of dimensions, not depend-

ing on any additional information introduced by a parameter. Other insights can be grasped utilizing

dimension-reduction subspace clustering that confluences multiple iterations of expensive algorithms in

the full set of dimensions, and usually requires strategic implementations of some sampling technique to

improve performance. Top-down algorithms create clusters that are partitions of the dataset, meaning

each instance is assigned to only one cluster. The most critical parameters for top-down algorithms is the

number of clusters and the size of the subspaces, which are often very difficult to determine ahead of time.

Moreover, since the subspace size is a specified parameter, these algorithms tend to find clusters in the

same or in similarly sized subspaces. For techniques that use sampling, the size of the sample is another

critical parameter and can play a large role in the quality of the final results. PROCLUS [57] is an ex-

ample of dimension-reduction subspace clustering, working in a manner similar to the already referenced

k-medoids method. It works by sampling the data, selecting a set of k medoids and iteratively improv-

ing the clustering in a three phased approach consisting of initialization, iteration, and cluster refinement.

As with any clustering techniques, finding meaningful and useful results depends on the selection of

appropriate techniques and tuning of the algorithm’s parameters. In order to do this, there needs to

be an understanding of the domain specific context to be able to best evaluate the results from various

approaches. One must also understand the various advantages/disadvantages, and biases of the potential

clustering algorithms.
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2.4 Validation Indicators

Although not a primary point of development of this thesis, validation indicators are ever present in

assuring, or attempting to assure the ideal clustering performed in a given dataset. Historically, a host

of performance metrics have been brought up for the evaluation of clustering results based on a singular

realization of a point-set process [58, 59]. Indisputably, the accuracy measurement of a cluster operator

is not feasible when based on a singular application. It would not be logical to think that a classifier

could be validated through the analysis of a single point without knowledge of the true classification of

that point. Analogously, a cluster operator should not be evaluated facing a nonexistent ground-truth

partition. The spatial structure of the grouping outputted by the cluster operator can be organized based

on its various aspects, for example compactness.

One can loosely divide validity measures into three categories. The first is supported on the calculation

of properties of the resulting clusters, for instance, separation, compactness, and roundness. The approach

is named internal due to the absence of additional information regarding the data. The second is supported

on comparisons of partitions originated from runs of the same algorithm minus a change in subsets of the

data or in the input parameters. This one is named relative and shares the lack of additional information

present in the first approach. The final one, denominated external, is some sort direct or indirect error

measurement.

In this section, several validation indices will be covered, and their motivations and advantages/dis-

advantages discussed. A more thorough review can be retrieved reading the work of Halkidi [60].

2.4.1 Internal Validation Indicators

The simplest way to assess a clustering algorithm is by guidance of internal indicators as the focus here

is solely on the spatial distribution of the points and on the computed cluster labels. This family of

methodologies is based on the assumption that the algorithms should look for groups far from members

of other clusters and whose members are close to each other.

Dunn’s Indices Following a simple concept - the further apart are the groups, relative to their size,

the larger the index and the better the clustering - this ratio addresses the disparities of the minimum

distance between two clusters and the size of the largest cluster [61], i.e.

V (C) =

min
i 6=j

dC(Ci, Cj)

max
j

∆(Cj)
,

where dC is the distance between two clusters and ∆ the cluster sizing function. Due to the high number

of possible options for the computation of the numerator and the denominator the ability to mix and

match distance and cluster-sizing measures can be staggering [62].

Silhouette Index The silhouette of a cluster is defined as the average silhouette width of its points,

where the width of a certain point defines its proximity to its own cluster relative to its proximity to
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other clusters, that is

S(x) =
min_avg(x)− avg(x)

max (min_avg(x), avg(x))
,

where x is the data point, avg the function that computes the average distance between x and all other

points in its own cluster, and min_avg the minimum of the average distances between x and the points

in the other clusters. For each x, the silhouette width ranges from −1 to 1: if the value is closer to −1,

the point is on average closer to another cluster than the one to which it belongs; and the contrary also

holds true, meaning the more compact and separated the clusters the higher the index will be.

2.4.2 Relative Validation Indicators

Neither are internal indices sensible to the stability of the algorithm against variations in the data, nor

do they sense the consistency of the results in the case of redundancy. A family of more complex indices

arises and attempts to exploit the repetition of information assumed to be prevalent in the data available.

Figure of Merit The figure of merit (FOM) of a variable is calculated by grouping the samples

after removing the given feature and measuring the average distance between all samples and their

cluster’s prototypes concretely on the inspected feature. If this average distance is small, the algorithm

is considered consistent because it partitioned the samples in compact clusters even with the feature

removed. Speaking in terms of the heuristic, a clustering method that produces consistent clusters should

be able to predict removed features, and thus have a low FOM index. However, the FOM performance

based on simulated data is usually below that of simpler validation indices, including many internal ones.

Do note however that the necessity of repeating clustering many times, in conjunction with the poorer

performances against simpler techniques in simulated data, makes this measure one of the last choices

for selecting a validation index [63].

Stability The ability of a grouped data set to predict the clustering of another data set sampled from

the same source is measured by the instability index [64]. It functions by dividing the set of points to

be categorized in two parts: initially, on the first collection of points, the clustering algorithm under

scrutiny is applied and obtained labels over these points are used to train a classifier that segregates the

entire space. Both the original clustering algorithm and this new classifier are applied to the second part,

generating two distinct sets of labels. The disagreement between these labels, averaged over repeated

random partitions of the points, defines the instability of the clustering algorithm.

The dependence on the number of clusters dictates the need for the instability index to be normalized

when used for model selection. Other preoccupations occur in the classification rule selection, which can

strongly influence the output [64]. Simulation inquiries show underperformance against other internal and

relative indicators, despite being one of the most time consuming ones since it involves the reoccurring

application of a clustering algorithm and training a classifier [65].
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2.4.3 External Validation Indicators

The last family compares properties of an algorithm’s fabricated clusters against that of known ground-

truth clusters.

Hubert’s Correlation This statistic computes, for the achieved partition after applying a clustering

algorithm and the expected partition, the correlation between the respective co-occurrence matrices. Not

relying on label permutations since co-occurrence matrices do not depend on the classifications used to

define the groupings, the index exploits the notion that similar partitions have similar co-occurrence

matrices, and consequently high correlation [66].

(Adjusted) Rand Statistics and Jaccard coefficient Working with the same co-occurrence ma-

trices of the previous statistic, the measure of disagreement constrained to [0, 1] between the clusters is

quantified by the number of pairs of points i and j that reside in each of four categories:

1. i and j fall in the same cluster in the computed and expected cluster;

2. i and j fall in the same cluster in the computed partition, but in different clusters in the expected

partition;

3. i and j fall in different clusters in the computed partition, but in the same cluster in the expected

partition;

4. i and j fall in different clusters in the computed and expected cluster.

The Rand statistic measures the proportion of pairs of vectors that agree by belonging either to the

same cluster (1.) or to different clusters (4.) in both partitions and assumes the form of

R =
(1.) + (4.)

M
,

whereM = n·n− 1

2
is the number of pairs composed of different points. The bias present in this indicator

is shown as two random partitions do not produce a constant R, problem corrected by the adjusted Rand

index (ARI) that assumes a generalized hyper-geometric distribution as the model of randomness. The

ARI has the maximum value of 1, and its expected value is 0 in the case of random clusters - a larger ARI

means a higher agreement between two partitions. The ARI is recommended for measuring agreement

even when the partitions compared have different numbers of clusters. The Jaccard coefficient touches

on the same metrics by measuring instead the proportion of pairs that belong to the same cluster in both

partitions, relative to all the pairs belonging to the same cluster in at least one of the two partitions, and

is given by

J =
(1.)

(1.) + (2.) + (3.)
.
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This chapter addresses the problem of dimensionality reduction and its effect on data structure

masking. Strategies to overcome this difficulty are presented and analyzed with both synthetic and

real data.

When it is thought that some of the features studied do not contribute much to identify the clustering

structure, or when the number of features is large, researchers promote the application of discrete and

continuous models in a sequential manner to detect non-observable dimensions that summarize the infor-

mation available in the data set. This operation frequently consists in performing PCA before applying

a clustering algorithm on the scores of the objects on the first components [67]. This kind of approach

was firstly named "tandem analysis" by Arabie and Hubert [68] and was already disputed by De Sarbo et

al. [69] because the dimensions identified by feature extraction/selection techniques may not necessarily

help us to understand the group structure of the data, possibly obscuring and masking the taxonomic

information in the process.

With a mind set aiming at packing the vital information available, De Soete [70] proposed Reduced

K-Means (RKM), a procedure that represents each cluster by its centroid in a low-dimension space. In a

second step, the low-dimensional representation of the clusters is obtained after projecting the objects to

the centroid space. In this methodology, a subspace of the full data space is found such that the actual

data points present in the full space have the smallest sum of squared distances to the centroids lying

in a subspace. The method may fail to find relevant clusters residing in a subspace when the data has

too much variance in the orthogonal direction to the one enclosing the relevant cluster, as this variance

may significantly impact the computation of the sum of squared distances between the data points and

the prototypes. Focusing on reaching a subspace representation of the data, a method called Factorial

K-Means [67], attempting to find the subspace where the projected observations have the smallest sum

of squared distances to the central points of each cluster in the same subspace, is brought up. Other

processes combining cluster analysis and the search for a new dimensional representation exist, based,

for example, on unfold analysis or multidimensional scaling applications.

The tandem approach is conjectured to perform worse when variables are added that are unrelated

to the cluster structure, and the study in this chapter confirms this conjecture. A theoretical comparison

between FKM and RKM is developed and it is confirmed that they complement each other: for RKM, the

subspace recovery is undermined with increasing relative sizes of complement residuals compared to the

subspace residuals; while the reverse holds true for FKM. As both methods can suffer from subspace and

membership recovery problems, it is essential to take into account the basis of the content and context

of a given problem and critically evaluate each of the methods’ solutions.
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3.1 Tandem Analysis

An example where the inclusion of irrelevant features potentiates the masking of the groups’ structure

is showcased because it may help to clarify some of the problems brought to light here. In Fig. 3.1, and

similarly to [71], 42 objects are plotted on two variables spread out as well-defined irregular hexagonal

structures symbolizing three different classes. In this example, the objects were also described by other

four noise random variables generated by a normal distribution with 0 mean and variance 6. The new

42×6 matrix is partitioned using the k-means clustering algorithm and the results who identify the group

membership of all observations are illustrated by their classification from 1 to 3, in Fig. 3.1.

In the figure, it is visible that the two-dimensional data set has been masked, if not completely

hidden, by the six-dimensional data set. Namely, we can affirm the missclassification of 26 of the 42

objects. The use of a variable reduction technique to extract the most relevant information may be

deliberated to reduce the masking effect in this scenario, but this line of thought is not viable as can be

seen in Figs. 3.2a, 3.2b, 3.2c, and 3.2d, where PCA is applied on the six-dimensional space and k-means

is sequentially performed on the increasing dimensions of the components’ scores. Note that in the last

three of these computations, in the scores of the three, four and five principal components resulting from

the k-means algorithm, the location of the objects in Subfigures 3.2b, 3.2c, and 3.2d is projected on the

two original variables that define the three well-separated classes, while the class membership in these

subfigures correspond to the results of the respective tandem analyses. The percentage of total variance

explained by the different solutions is showcased in Table 3.1. In Fig. 3.2a, the first two components

are not the original ones that represent the well-defined and separable three classes, which coincides in

objects not being close to those of the same class and being misslabeled in return. Once we increase the

number of principal components to be considered when applying the clustering algorithm the situation

becomes slightly better, and the number of missclassifications brought down from 26 to 10, in Fig. 3.2d.

Figure 3.1: K-means classification of 42 objects described by six variables, two of which determine the location
of the points in the plot (three classes) and the other four variables are randomly generated by normal

distribution.

The tandem analysis carried out in this section is the most popular, and usually performed. To
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(a) First two principal components (b) First three principal components

(c) First four principal components (d) First five principal components

Figure 3.2: Tandem analysis. K-means clustering computed on: (a) the first two components’ scores; (b) three
components’ scores; (c) four components’ scores; (d) five components’ scores. Note: Classifications (b), (c) and

(d) are represented on the two variables that defined the three well-separated classes in Fig. 3.1.

avoid the case of distorted mutual distances between the objects one should substitute the standardized

scores by those multiplied by the square roots of the eigenvalues, providing a much better conservation

of the distances. In our example this action did not yield any improvements and proved to be inefficient,

having produced highly similar outcomes to what was previously obtained in the case study using 2

to 5 components. We make the conclusion that the poor performance of the tandem approach is not

sourced in the bad space representation, but instead it originates from the simple fact that the principal

components are not upbringing the best achievable agglomerations.

Table 3.1: Explained total variance and cumulative variance.

Components Eigenvalue % variance % cumulative

1 1.23 25.33 25.33
2 1.03 17.52 42.85
3 1.00 16.78 59.63
4 0.98 16.15 75.78
5 0.89 13.21 88.99
6 0.81 11.01 100.00

24



3.2 Two alternatives: Factorial and Reduced K-means

Before advancing with any comparison to a sequential tandem approach, two similar to each other but

easily distinguishable integrated methods are introduced and analyzed.

3.2.1 Optimization of the Loss Functions

Both integrated approaches aim at identifying the best partition of objects described by the best orthog-

onal linear combination of variables following the least squares criterion. A dual objective is attempted

to be achieved: optimal data synthesis of objects and attributes occur simultaneous to variable selection

in cluster analysis, where the features that contribute the most to select a label to all data points are

pinpointed. The methods deconstruct the data matrix X into an object membership assignment matrix

U, an orthonormal components’ score matrix A that expresses the loadings of the variables, and a cluster

centroid score matrix Ȳ. An artificial example of a possible layout of the matrices, with I = 3, J = 6,

P = 2 and Q = 2, follows:

U =


1 0

0 1

0 1

 , A =



0.4 0.0

0.3 0.0

0.0 0.7

0.0 0.8

0.0 0.0

0.0 0.0


, Ȳ =

 2.4 2.9

−0.6 −5.1

 .

Matrix U indicates that Object 1 belongs to group one, and the remaining objects to the other group.

Loading matrix A shows Variables 1 and 2 associated with the first subset of attributes, Variables 3 and

4 associated with a second dimension, and the remaining not belonging to any subset, and thus irrelevant

to information representation (masking features that do not help represent the structure of the data).

The centroid matrix contains the centroids location of the two clusters.

In respect to clustering, these initiatives are categorically identified as selection and weighting ap-

proaches, being the fundamental difference to other approaches in the same category that in RKM and

FKM the selection, weighting, and clustering are done simultaneously, instead of being two very distinct

phases of the process. The distinction between these modified k-means methods lies on the objective

functions considered by their models. The RKM loss function to minimize is written as

FRKM (U,A, Ȳ) = ||X−UȲAT||2, (3.1)

whereas the FKM minimizes the loss function

FFKM (U,A, Ȳ) = ||XAAT −UȲAT||2 = ||XA−UȲ||2. (3.2)
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When the prototypes are located in the full space, i.e. when the number of variable clusters are equal

to the number of variables in the data, the methods trace back to the original k-means algorithm. The

mathematical representation introduced provides interesting properties to the methods: the clusters have

permutational indeterminacy - the value of the loss function can remain intact by replacing U by UR,

with a permutation matrix R, provided that the permutation is compensated for in the centroid matrix

as RTȲ - and both the components’ score and centroid matrix have rotational indeterminacy - the value

of the loss function can remain intact by replacing A by AΨ, where Ψ is a orthonormal rotation matrix,

provided that the rotation is compensated for in the centroid matrix as ȲΨ.

As is observable from Eq. (3.1), RKMminimizes the sum of the squared distances between the observed

and the centroids located in a subspace of the data which is spanned by the columns of A. From (3.2)

it is taken that FKM minimizes instead the within-clusters deviance in the reduced space, i.e. the sum

of the squared distances between the centroids in the projected space and the observed data points that

are projected onto the subspace in which the centers of the clusters reside.

3.2.2 Model Analysis

Let’s now analyze the model fit for each case. The RKM model fitted by (3.1) is

X = UȲAT + ER, (3.3)

where ER is an (I × J) residual matrix. Given the fact that the optimal Ȳ is equal to (UTU)−1UTXA

then (3.3) is rewritten as

X = PUXAAT + ER,

where PU = U(UTU)−1UT is a projection matrix on the space spanned by the columns of U that

denotes the weights of the objects to compute the cluster center. On the other hand, the FKM fitted

by (3.2) is

XAAT = UȲAT + EF , (3.4)

where EF is an (I × J) residual matrix. Taking the optimal Ȳ we can once again rewrite a model as

XAAT = PUXAAT + EF .

The equations reinforce the data reconstruction process achieved by both methods: RKM only has the

centroids lying in the reduced space for the reconstruction, while FKM assumes that the objects also lie

in the lower-dimensional space.

Note that the residuals of the FKM model can be expressed as EF = XAAT −UȲAT, where the

matrix EF belongs in the row space of AT: Understanding that E is in the same column space as EF

permits for EF = EAT to hold. This way, when the full space of X is represented, EF includes the
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subspace residuals of the projected data. With

XAAT = UȲAT + EF = UȲAT + EAT = (UȲ + E)AT,

and recalling the rotation property of the projected configuration of objects, Equation (3.4) is rewritten

as XA = UȲ + E. The FKM model as it stands models the orthogonal projection onto a subspace

of the data. Another residual term describing the residuals in the orthocomplement subspace of A is

added to model X instead of XAAT; the so called complement residuals, X −XAAT, are denoted by

E⊥A⊥T, where A⊥ is a columnwise orthonormal matrix constrained by ATA⊥ = 0. The full model of

X is formulated and serves as the backbone of the discussion over the performances both approaches,

X = UȲAT + EAT + E⊥A⊥T. (3.5)

Model (3.5) is broken down into two types of residuals and a structural part. The residuals are

distinguished as subspace residuals EAT located within the subspace where the prototypes (RKM) or

the prototypes and data points (FKM) lie, and as complement residuals E⊥A⊥ located within the

complement of the subspace. Looking at (3.5) one can idealize four types of data composed of different

configurations: data that contain both subspace and complement residuals (E 6= 0 and E⊥ 6= 0), data

that holds subspace residuals only (E = 0), data that holds subspace residuals only (E⊥ = 0), and lastly

data that contain neither subspace nor complement residuals (E = 0 and E⊥ = 0). In Fig. 3.3, fixing

J = 2, C = 2, and Q = 1, examples of the idealized types are showcased.

To retrieve further insight into the masking of variables it is worth it to analyze the data deconstruc-

tion. Because these concealed features are not affiliated in any way with the clustering structure the

assumption of them belonging entirely to the residual portion of (3.5) is made. As they do not contain

to any extent the clustering structure in the object assignment matrix, it means that they do not have

any weights in the underlying variable attribution matrix. Consequently, the nature of masking variables

must be fully present in the complement residual.

3.2.3 Finding the Ideal Data

From (3.2) it follows that the FKM’s loss function is null if and only if XA = UȲ. Considering the

(I × J) data matrix X can be expressed in terms of the (J × Q) loadings matrix A and A⊥, with B a

(I ×Q) matrix and C a (I × (J −Q)) matrix, as

X = BAT + CA⊥T, (3.6)
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(a) No subspace and complement residuals (b) Complement residuals only

(c) Subspace residuals only (d) Both subspace and complement residuals

Figure 3.3: Examples of data configurations. (a) Neither subspace nor complement residuals; (b) Complement
residuals only; (c) Subspace residuals only; (d) Both subspace and complement residuals. Note the choice of

subspace (one dimension subspace represented by a diagonal line from bottom left to top right).

replacing (3.6) in XA = UȲ we find XA = BATA+CA⊥TA = B = UȲ. Returning to the ideal FKM

data we have X = UȲAT + CA⊥T, and stating the general matrix C by E⊥, the full class is

X = UȲAT + E⊥A⊥T. (3.7)

Equation (3.4) reiterates the characteristics of the ideal FKM data as being the one with null subspace

residuals, and having no particular restriction on the complement residuals, Fig. 3.3a and 3.3b.

From (3.1) it follows that the RKM’s loss function is null if and only if X = UȲAT. Equation (3.3)

illustrates the ideal RKM data, showcased in Fig. 3.3a, as being the one with null subspace and comple-

ment residuals, thus encompassing the domain of the ideal FKM data (the reverse does not hold true,

ideal FKM data does not guarantee ideal RKM data).

3.3 Performance Comparison

The varying success in clustering structure recovery within the different layouts of the data displayed in

Fig. 3.3 is examined and possible solutions are displayed in Fig. 3.4.
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(a) No subspace and complement residuals (b) Complement residuals only

(c) Subspace residuals only (d) Both subspace and complement residuals

Figure 3.4: Examples of possible FKM and RKM solutions for the four idealize types of data. (a) Neither
subspace nor complement residuals; (b) Complement residuals only; (c) Subspace residuals only; (d) Both

subspace and complement residuals. The lines in the subfigures indicate the subspace(s) where RKM and/or
FKM may end up.

3.3.1 Absence of Subspace and Complement Residuals

We start by considering data without subspace and complement residuals, an instance that allows RKM’s

and FKM’s model to reach a perfect compliance with the available information.

Contrarily to RKM that yields a perfect solution, FKM may arbitrarily determine solutions with the

nullification of the loss function irrespective of the projected subspace having the clustering structure

or not. Assume, for example, that the complement space has more dimensions than the subspace with

the wanted structure to be identified. A projection on an orthogonal subspace to the one of interest

implies that the loading matrix is estimated to be Â = A⊥R, with R an arbitrary orthonormal matrix.

Consequently, the coordinates of the lower-dimensional data point representation are equal to XÂ =

UȲATA⊥R = UȲ0 = 0, the loss function being zero with an arbitrary Û and Ȳ = 0. The objective

function is obviously also zero if Â is taken within the desired subspace itself, as AR. Whether or not the

estimated feature attribution matrix is in the column space of A and/or in its orthogonal complement

A⊥ the minimum value of FFKM is zero. The possible arbitrary response provided by FKM is easily

detectable as the total variance of XÂ is zero when the solution resides simply in the orthocomplement

subspace. Figure 3.4a provides a visual cue on the possible two FKM solutions, as well as the single

RKM solution.
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3.3.2 Complement Residuals Only

In the second case, assuming that the correct numbers of clusters of objects and variables are being

estimated and that the complement residuals have full rank J −Q, it can be proven that FKM estimates

Â = A⊥R, Û = UΨ and ˆ̄Y = ΨTȲR, with Ψ some permutation matrix (for more precise clarifications

see [72]). In this situation the RKM objective function is

F (U, Ȳ,A) = ||(UȲAT + E⊥A⊥T)− Û ˆ̄YÂT||2

= ||UȲAT − Û ˆ̄YÂT||2 + ||E⊥A⊥T − Û ˆ̄YÂT||2

= ||UȲAT − Û ˆ̄YÂT||2 + ||E⊥A⊥T||2 − 2tr(Û ˆ̄YÂTA⊥E⊥T) + 2tr(UȲATA⊥E⊥T)

= ||UȲAT − Û ˆ̄YÂT||2 + ||E⊥A⊥T||2 − 2tr(Û ˆ̄YÂTA⊥E⊥T).

Even with a perfect estimation of U, Ȳ and A the term ||E⊥A⊥T||2 is not absent of value and RKM may

end up with a response that may partly occupy the A⊥ subspace if this solution has a lower F , Fig. 3.4b.

3.3.3 Subspace Residuals Only

In the third case the observed data follow X = UȲAT + EAT, and the RKM loss function value is

guaranteed to be larger than zero. Due to the fact that any interception of the solution with A⊥ adds

on to F the subspace solution will always be the correct one, despite the invariable expected degradation

of the structure’s subspace recovery with an increase of subspace residual variances.

With this configuration, when FKM estimates Â = A⊥R, then XA⊥R = (UȲAT +EAT)ATR = 0,

i.e. the projected data are zero, with Ȳ = 0 and U is arbitrarily estimated. When the estimated loading

matrix Â partly or fully resides in the subspace spanned by A the loss value is larger than zero and,

therefore, solutions with Â = A⊥R are favoured. The performances of both methodologies are illustrated

in Fig. 3.4c.

3.3.4 Subspace and Complement Residuals

In the last case, the observed data follow X = UȲAT + EAT + E⊥A⊥T, and the presence of both

subspace and complement residuals makes it difficult to intuitively proclaim any statement with respect

to the RKM’s and FKM’s solutions. Based on the behaviors with only one of the residual components

activated, the conjecture that, in the face of significant subspace residuals when compared to complement

ones, RKM will perform better is made. The reverse holds true in the case of only complement residuals.

In the work of Timmerman et al. [72] the conjecture is confirmed via an extensive simulation study; RKM

and FKM are dictated to complement each other, although RKM is set up as having a wider applicability,

especially when the majority of the variables reflect the clustering structure.
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3.4 Integrated Approach Application

Following the discussion, performance is assessed by applying the methodology to a first simulated data

already analyzed with tandem analysis, and a second data set analyzing data of psychiatric patients.

3.4.1 Simulation Study

Because we know that in the present situation the agglomerations lie in a subspace of the full data

space, RKM and FKM are applied to the data, specified the centroid to be located in a two-dimensional

subspace. The result exposed in Fig. 3.5 reveals structure recovery and data classification failure of RKM.

Figure 3.5: Classification of 42 objects in a low-dimensional space represented by the first two dimensions of
the reduced k-means analysis.

Turning to the FKM procedure, Table 3.2 introduces the correlations between the model defined

factors and the six original features. Figure 3.6 represents the 42 objects laid on the first two factors

discovered and illustrates the impact of the random noise generated variables is drastically attenuated to

the point of the well-separated structure making its appearance again.

Table 3.2: Correlation between the first two dimensions of the factorial k-means analysis and the six variables.

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6

Dim 1 0.9987 0.0432 -0.0235 0.0085 0.0101 0.0034
Dim 2 0.0440 -0.9958 0.0253 -0.0645 0.0112 -0.0381
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Figure 3.6: Classification of 42 objects in a low-dimensional space represented on the first two dimensions of
the factorial k-means analysis.

3.4.2 Archetypal Psychiatric Patient Data

In the study of Mezzich and Solomon in [73], eleven psychiatrists were asked to describe the psychiatric

patients’ type according to four diagnostic categories associated with the DSM-II nomenclature of mental

disorders of the American Psychiatric Association [74]. These categories are paranoid schizophrenic (PS),

manic-depressive manic (MDM), manic-depressive depressed (MDD), and simple schizophrenic (SS). The

patients were rated on the basis of 17 symptoms on a seven point scale from the Brief Psychiatric Rating

Scale (BPRS): 7 meaning extremely severe and the opposite extreme, 1, meaning not present. These

clinical annotations result in a 44× 17 data matrix.

The data matrix was inspected with RKM and FKM over 500 random starts with four clusters of

objects and a flexible number of features subsets ranging from 1 to 17. The evaluation metric chosen

for the quality of recovery of the patients’ types was the ARI between the expected and the estimated

memberships. For each number of components the variance of the observed data var(X) was calculated,

as well as variance of the projected data, var(XA). Several questions arise from the work done: Can

the archetypal patients be obtained from the data? Can the symptoms be distilled to fewer relevant

dimensions? And which features are important in the definition of the diagnostic characterizations under

study?

Selection of Solutions

In Table 3.3 the relation between the increasing number of variables subsets and the non-decreasing

fit of the RKM model is immediately clear. A series of analyses focused on predicting the optimal

number of components Q is available. The model optimizing the balance between complexity/fit is

chosen supported by the ARI values, exposing the fact that the addition of more components would not

improve the clustering (a solution with 3 components was considered optimal).

Because the FKMmodel fit of the lower-dimensional data representation more often than not decreases

with increasing numbers of components - as XA varies with differing Q’s - the conclusions on FKM taken
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over the var(X) values are rather unreliable as a low variance value has dubious interpretations: it is

either indicative of high success in neglecting masking features, or indicative of failure in modelling the

agglomeration structure.

The Adjusted Rand Index values of most of the FKM solutions bring to light the poor retrieval of

the clustering structure. In fact, only the use of all or almost all components (Q = 16) appear to be

at a satisfactory level of recovery. As these solutions are more complex, and a clear approach to the

selection of the number of components in FKM analysis is lacking, in the remaining data set study only

the optimal RKM solution is used.

Table 3.3: Values of var(X), var(XA) and Adjusted Rand Indices for each FKM and RKM solution.

Q RKM FKM

var(X) var(XA) ARI var(X) var(XA) ARI

1 0.41 0.97 0.45 0.00 0.98 -0.01
2 0.53 0.87 0.69 0.01 0.92 0.10
3 0.64 0.85 0.88 0.02 0.82 0.12
4 0.64 0.79 0.88 0.02 0.75 -0.01
5 0.64 0.83 0.88 0.03 0.60 -0.01
6 0.64 0.80 0.88 0.03 0.55 0.01
7 0.64 0.78 0.88 0.02 0.60 0.17
8 0.64 0.78 0.88 0.03 0.50 0.10
9 0.64 0.75 0.88 0.03 0.46 0.09
10 0.64 0.73 0.88 0.05 0.50 0.26
11 0.64 0.71 0.88 0.08 0.55 0.37
12 0.64 0.69 0.88 0.06 0.41 0.15
13 0.64 0.68 0.88 0.10 0.47 0.12
14 0.64 0.66 0.88 0.42 0.74 0.37
15 0.64 0.65 0.88 0.46 0.72 0.51
16 0.64 0.65 0.88 0.55 0.69 0.78
17 0.64 0.64 0.88 0.64 0.64 0.88

Interpretation of the Model

In an attempt to facilitate interpretation and to reach the most simplified version of the solution, the

clusters were characterized by the linear combination of the fewer components possible. In Table 3.4 one

can easily relate Cluster 1 to Component 2, Cluster 2 to Component 1, Cluster 3 to an almost similarly

weighted contribution of both Components 1 and 2, and Cluster 4 to Component 3.

Table 3.4: Rotated centroid scores of the clusters (C = 4) on the components (Q = 3) of the RKM solution;
MDD is manic-depressive depressed,MDM is manic-depressive manic, SS is simple schizophrenic and PS is

paranoid schizophrenic.

Centroids Components

I (MDM) II (PS) III (SS)

1 (PS) -0.04 0.34 0.09
2 (MDM) 0.45 -0.04 0.12
3 (MDD) -0.27 -0.25 -0.02
4 (SS) -0.09 -0.10 0.44
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As the variables are taken from the BPRS, specifically developed to help diagnose psychiatric patients,

it is not surprising that every single feature appears to have a strong input in at least one component, and

is therefore considered relevant in the characterization of the archetypal patient. Inspecting the loadings

in Table 3.5 divulges that Component I shows high positive loads on symptoms present in typical MDM

patients and low loadings elsewhere; therefore, Component I is labeled as MDM. Following a similar vein,

Components II and III are labeled PS and SS, respectively.

Having dealt with the labeling of the components one can now assign the clusters accordingly as

Clusters 1 to 4 are catalogued as PS, MDM, MDD and SS, respectively. As PS, MDM and SS clusters are

predominantly related to a unique component their symptoms are attributed respecting the concerned

component. An exception on the MDD cluster is evidenced in the roughly equally negatively weighted

combination of PS and MDM symptoms - the negative signs implying the absence of MDM or PS

symptoms in MDD (the reverse analogy holding true as well).

Table 3.5: Rotated loadings of 17 variables on the components of the RKM solution (Q = 3); MDM is
manic-depressive manic, SS is simple schizophrenic and PS is paranoid schizophrenic. Loadings relevant to

categorize each component are indicated in bold.

Variables Components

I (MDM) II (PS) III (SS)

Excitement -0.33 0.11 -0.22
Grandiosity -0.37 0.00 -0.14
Somatic concern 0.21 -0.36 -0.13
Anxiety -0.44 0.06 -0.27
Emotional withdrawal 0.26 -0.25 0.29
Motor retardation 0.34 -0.19 -0.06
Depressive mood 0.30 -0.31 -0.31
Guilt feelings 0.28 -0.22 -0.34
Mannerisms and posturing -0.04 -0.18 0.40
Hostility -0.16 -0.18 -0.31
Suspiciousness -0.15 -0.43 0.06
Hallucinatory behavior -0.17 -0.37 0.15
Uncooperativeness -0.26 -0.23 -0.06
Unusual tought content -0.12 -0.35 0.06
Conceptual disorganization -0.06 -0.23 0.12
Blunted effect 0.21 0.01 0.44
Tension -0.22 0.01 -0.25

In Fig. 3.7 the observed scores are projected in XA and the cluster prototypes are visible. The para-

noid schizophrenic agglomeration appears to be the one with smaller variability with reference to the

annotated psychiatrists’ grading. The two endured missclassifications have origins in different psychia-

trists, denoting perhaps a subjective entity introduced in the classification, such as academic background

or the clinicals’ experience.

In conclusion, and providing a definite answer to the questions brought up, the RKM model allows,

from the known descriptions, a good recovery of the four types of patients. The relationships between

the symptoms and patients were cleared as PS, MDM and SS patients seemed to have specific patterns

of symptoms; on the other hand, MDD patients contrasted with this behavior and showed symptoms
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absent in PS and MDM patients, and seemed to not have symptoms present in PS and MDM.

Figure 3.7: Observed scores projected to the RKM subspace, for (left) the MDM versus PS dimension, and
(right) the PS versus SS dimension (inspired by [72]).
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This chapter provides a description of the Clustering and Disjoint Principal Component Analysis

algorithm [75], expressed as a solution to an optimization problem. The numerical model of this

iterative process is also detailed. The algorithm follows the methods alluded in Chapter 3 and in-

troduces new constraints in the allocation of variables in subgroups.

When dealing with real data sets, there may be the need to reduce not solely the dimension of the

feature space, but also to unveil some patterns among the objects. The addressed methodology obtains

the desirable scenario for data interpretation and visualization by attaining non overlapping clusters of

objects and disjoint and sparse classes of variables. It is heavily linked to RKM, distinguishing itself due

to constraints imposed on the variable allocation matrix A. Here in CDPCA [75], because there is a

particular interest in defining factors of maximal variance to specify the classification of the features, the

preferred approach is the maximization of the between-class deviance in the reduced space, as performed

by reduced k-means.

Following the discussion of the clustering and disjoint PCA model and the least-squares estimation

of the model, performance is assessed by applying the methodology firstly to a data set describing short-

term macroeconomic scenario of OECD countries and a second data set analyzing the small round blue

cell tumors.

4.1 Model Definition

The CDPCA model is the result of applying the k-means algorithm on a data matrix to be able to

represent the objects by their centroid, and simultaneously performing PCA on the transformed data

matrix [75]. The main goal is to find a cluster of objects along a set of centroids and at the same time

partition the variables into a set of disjoint components, while maximizing the between cluster deviance

in the reduced space of the components. The model can be expressed by

X = UX̄ + E1 (K-means step on X) (4.1a)

= UȲAT + E1 + E2 (PCA step on UX̄) (4.1b)

= UȲAT + E (4.1c)

where E, E1 and E2 are I × J error matrices and E = E1 + E2. From Eq. (4.1c) one can write the

CDPCA model in order of E, E = X−UȲAT, and rewrite the CDPCA problem into a minimization of

the error matrix,

min
U,Ȳ,A

‖X−UȲAT‖2, (4.2)

whereU is a binary and row stochastic matrix, Ȳ is an object centroid matrix in the reduced space and A

is a column-wise orthonormal matrix where each row contributes to only one column. The transformation

of the problem reflected in (4.2) to the equivalent maximization of the between cluster deviance in the
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reduced space follows as

‖UȲAT‖2 = ‖UX̄AAT‖2

= tr{[UX̄AAT][UX̄AAT]T}

= tr{[UX̄A][UX̄A]T}

= ‖UX̄A‖2,

and since ‖X−UȲAT‖2 = ‖X‖2 - ‖UȲAT‖2 is applicable,

‖X−UȲAT‖2 + ‖UȲAT‖2 = tr{[X−UX̄AAT][X−UX̄AAT]T}+ tr{[UX̄AAT][UX̄AAT]T}

= tr{XXT} − 2tr{UX̄AATXT}+ 2tr{UTUX̄AATX̄T}

= tr{XXT} − 2tr{UX̄AATXT}+ 2tr{UTU(UTU)−1UTX̄AATX̄T}

= tr{XXT},

the problem can be rewritten to

max
U,X̄,A

‖UX̄A‖2.

The inclusion of the auxiliary matrix V, whose nonzero entries identify nonzero elements of A, and

knowing Ȳ = X̄A, the CDPCA problem can be tackled as a quadratic mixed continuous and integer

problem [76] given by

maxF = ‖UȲ‖2,

and constrained to the allocation of I objects and P clusters (4.3a), to the allocation of J variables into

Q disjoint components (4.3b) and constrained to the PCA implementation (4.3c).

uip ∈ 0, 1, i = 1, ..., I; p = 1, ..., P and
P∑
p=1

uip = 1, i = 1, ..., I; p = 1, ..., P, (4.3a)

vjq ∈ 0, 1, j = 1, ..., J ; q = 1, ..., Q and
Q∑
q=1

vjq = 1, j = 1, ..., J ; q = 1, ..., Q, (4.3b)

J∑
j=1

a2
jq = 1, q = 1, ..., Q and

J∑
j=1

ajqajr = 1, q = 1, ..., Q− 1; r = q + 1, ..., Q. (4.3c)

The maximum dissimilarity of centroids is represented by the maximization of the objective function.

The total variance of the data in the reduced space can be expressed as

F = tr(UȲ(UȲ)T) = tr((UȲ)TUȲ). (4.4)

To solve (4.4) an iterative algorithm called alternating least-squares algorithm (ALS) is proposed in [75].
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Algorithm 4.1. CDPCA.

1: Concerning the objects:

- allocate the I objects into P clusters. . matrix U

- calculate the centroids in the space of the observed variables. . matrix X̄

- identify objects by the cluster centroids in the observed variables space. . matrix Z

2: Concerning the variables:

- allocate the J variables into Q subsets. . matrix V

- obtain the loadings of the Q components. . matrix A

- calculate the centroids in the reduced space of the CDPCA components. . matrix Ȳ

- identify the objects in the reduced space of the CDPCA components. . matrix Y

Figure 4.1 illustrates the algorithm’s progression. In step 1, and after standardizing the data composed

of I objects and J variables, the objects are assigned to P clusters following matrixU. Afterwards, matrix

Z is created by assigning each row of the data matrix with the correspondent centroid. In step 2, matrix

V specifies the allocation of the J variables into Q disjoint components, and matrix A the CDPCA

loadings. To obtain these two matrices an iterative algorithm covers row-by-row, column-by-column,

matrices V and A in order to maximize the objective function F .

At the end of one iteration the component score matrix and the object centroid matrix in the reduced

space are found, and thus the I objects of the data matrix are allocated into P clusters, displayed in a

lower dimensional space of Q disjoint components. In the coming iteration the input matrix makes its

appearance in the form of Y. The algorithm is interrupted after assessing the solutions and checking

if the difference between the two consecutive objective function values Fk and Fk+1 is smaller than a

specified tolerance threshold.

Figure 4.1: The two basic steps of one iteration of the Alternating Least-Squares algorithm for performing
CDPCA (extracted from [76]).

Since F is bounded above the output of each iteration will converge to a stationary point - at least

a local maximum of the problem [75]; the algorithm can then be considered an heuristic and thus, to
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achieve a global maximum, several distinct initializations of the allocations’ matrices U and V should be

considered.

4.2 Algorithms

In this section the algebraic features of the algorithm are further elaborated.

4.2.1 Initialization

At the beginning, the data matrixX is standardized and the parameters to perform CDPCA are initialized

following Algorithm 4.2.

Algorithm 4.2. CDPCA initialization.

1: Parameters associated to the objects:

- Randomly generate the initial object assignment matrix U0 so that there is only a nonzero

element equal to 1 per row.

- Compute mean of each variable into each object cluster and the object centroid matrix X̄0.

- All the objects are identified by its cluster centroids.

2: Parameters associated to the components:

- Randomly generate the initial variable assignment matrix V0 so that there is only a nonzero

element equal to 1 per row.

- Construct the CDPCA component loading matrix A0 column-by-column, solving Q inde-

pendent PCA subproblems, one by each column.

The original variables belonging to the q-th CDPCA component are identified by the nonzero elements

of the q-th column of V0. These elements will be considered in the PCA subproblem to obtain the nonzero

elements of the q-th column of A0 that correspond to the first principal component obtained from PCA

applied on the submatrix W(q)
0 . This submatrix is extracted from the centroid-based data matrix where

each object is identified by the corresponding centroid, Z0 = U0X̄0, and restricted to the original variables

assigned into the q-th column of V0. Thus, the q-th column of A0 provides the direction vector with

maximum variability amongst the centroids in the subspace defined by the original variables assigned to

the q-th column of V0.

4.2.2 General Iteration

After performing the initialization steps, at the beginning of the (k+ 1)-th iteration of the algorithm the

matrices X̄k, Vk, Ak and Ȳk are all known. Making Xk+1 the result given by one run of the K-means

algorithm on the score matrix Yk = XAk starting from the object centroid matrix Ȳk in the reduced

space, the CDPCA general iteration is defined in Algorithm 4.3.
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Algorithm 4.3. CDPCA general iteration.

1: Parameters associated to the objects:

- P new clusters are obtained updating the centroid matrix by X̄k+1 = (UT
k+1Uk+1)−1UT

k+1X

and the object centroid-based matrix by Zk+1 = UkX̄k.

2: Parameters associated to the components:

-Vk+1 andAk+1 are sequentially updated row-by-row, and in each row, the process is consecu-

tively performed column-by-column, in an interdependent relationship with the maximization

of the objective function F .

These steps are repeated while there are empty clusters. At the end of the first step of the general

iteration every single cluster should be assigned with at least one object. If any cluster becomes empty

then a selection process takes place where half of the objects on the biggest cluster are assigned into one

of the empty clusters.

Regarding the second step of the algorithm, to update matrix Vk, that specifies a partition of the

original variables into Q disjoint components, each original variable is evaluated to find the component

that maximizes the objective function F . To begin with, the first row of Vk is updated by detecting for

which column the allocation of nonzero elements achieves better results in maximizing F . For the first

variable in Vk+1 the best component is selected by solving Q PCA subproblems associated with W(q)
k+1.

In the q-th PCA subproblem the first principal component is calculated determining the update of the

q-th column of Ak+1, and the centroid matrix in a reduced space, and the objective function value can

be calculated by Ȳk+1 = X̄kAk+1 and Fk+1 = tr((Uk+1Ȳk+1)TUk+1Ȳk+1).

The same rationale is repeated for the following rows of Vk making Vk+1 update row-by-row. Taking

into account the J original variables to obtain Vk+1 and Ak+1, J × Q subproblems are solved. In

each subproblem, a subspace of variables is considered and the best direction with maximum explained

variability is obtained performing a PCA step, leading to a maximization of the between cluster deviance

given by Fk+1 / ‖Yk+1‖2. These attributed components aren’t sorted in a traditional, decreasingly way,

and an additional step of rearranging the output into a classical form of representation is done.

4.3 Empirical Examples

The clustering and disjoint PCA has been applied to two real data sets to show the performances of

the methodology. The first data set describes the short-term scenario of the OECD countries analyzed

also with tandem analysis and factorial k-means. The second data set takes into account microarray

experiments of Small Round Blue Cell Tumors (SRBCT) of a childhood cancer study by Khan et al. [77].

4.3.1 Latest Short-term Macroeconomic Scenario

To test the ability of CDPCA in identifying classes of similar economies and helping understand the

relationships within the set of financial indicators, a short-term scenario from December 2017 on the
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macroeconomic behavior of the national economies of twenty countries, members of the Organization

for Economic Co-operation and Development (OECD), is analyzed. The six main economic indicators

whose interactions reflect the economies are: leading indicator (LI), trade balance (TB), unemployment

rate (UR), interest rate (IR), gross domestic product (GDP), net national savings (NNS), shown in more

detail at Table 4.1.

Table 4.1: Latest short-term indicators and economic performance indicators (December 2017).

Country

Gross
Domestic
Product
(GDP)

Leading
Indicator
(LI)

Unemploy-
ment rate
(UR)

Interest
rate
(IR)

Trade
balance
(TB)

Net
national
savings
(NNS)

Class member-
ship obtained
by the
CDPCA model

Australia (A-lia) 5.8 21.9 5.5 2.6 0.7 2.7 1
Austria (A-tria) 4.6 12.4 4.9 0.6 -1.8 7.9 1
Belgium (Bel) 3.4 9.3 6.3 0.7 4.9 3.8 1
Canada (Can) 5.4 17.9 5.8 1.8 -0.7 2.8 1
Denmark (Den) 3.8 10.9 5.2 0.5 2.9 12.2 1
Germany (Ger) 3.8 15.0 3.4 0.3 7.7 10.1 1
Japan (Jap) 1.5 8.5 2.5 0.1 0.5 4.2 1
Mexico (Mex) 8.3 21.9 3.4 7.3 -0.9 5.9 1
Netherlands (Net) 4.4 10.7 3.9 0.5 9.3 11.9 1
Norway (Nor) 5.8 14.1 3.9 1.6 5.5 17.7 1
Sweden (Swe) 4.4 18.5 6.1 0.7 -0.2 12.5 1
Switzerland (Swi) 1.4 13.3 3.3 -0.1 5.3 13.7 1
Finland (Fin) 3.7 6.1 8.1 0.6 -0.9 1.0 2
France (Fra) 2.8 9.5 9.2 0.8 -3.5 2.6 2
Italia (Ita) 2.1 -0.1 11.2 2.1 2.7 0.7 2
Portugal (Por) 4.1 -0.4 7.4 3.1 -7.2 -2.3 2
Spain (Spa) 4.0 5.4 15.9 1.6 -2.3 3.9 2
United Kingdom (UK) 3.8 15.5 4.2 1.2 -6.8 0.0 2
United States (USA) 4.1 16.9 3.8 2.3 -4.1 3.7 2
Greece (Gre) 2.0 -18.5 20.1 6.0 -12.2 -7.6 3
a Source: OECD, Paris (2017).
b Definitions and notes: GDP – Percentage change from previous year; seasonally adjusted; LI – A composite
indicator based on other indicators of economic activity (qualitative opinions on production or employment,
housing permits, financial or monetary series, etc.), which signals cyclical movements in industrial production
from 6 to 9 months in advance; UR – Percentage of civilian labor force; seasonally adjusted; IR – long-term;
TB – (goods) % of GDP at current price 2017; NNS – % of GDP at current prices 2017.

After standardizing the variables no significant correlation is observed between the six economic factors

and the analysis was carried out computing the first two principal components, classifying countries on

the basis of those initial object scores. The results are shown in Table 4.2 and Fig. 4.2. The k-means

algorithm was run on the first two PCA starting from random partitions. It was necessary to run k-means

for a large number of initial random starts to dissipate the influence of local optima convergence (running

1 000 times k-means found the present optimal solution after 537 runs). The first two components

explain 54% and 27% of the total variance. The first dimension is characterized almost equivalently

by net national savings, unemployment rate, leading indicator (7%) and trade balance (6%); the other

two variables explain 3%, while 69% is due to the interrelations (sum of the covariances) among the

six variables. The second PCA dimension is characterized mainly by gross domestic product (30%),

interest rate (22%) and only slightly by leading indicator (6%)(the remaining three variables explain

4%), while 38% is due to interrelations among the six variables. Note how leading indicator characterizes
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both dimensions. Countries clusters, in Fig. 4.2, are highlighted by dotted ellipses. The between cluster

deviance of the optimal solution was equal to 51.9% of the total deviance.

Figure 4.2: Tandem analysis results on OECD dataset. K-means clustering (k = 3) computed on the first two
principal components (1 000 random start for k-means). Points without labels represent the centroids of

clusters. Clusters of countries are highlighted by ellipses.

The classification of the groups can provide a depiction of the economic progression in the past few

years, reflecting the divergent behaviors materializing in the set of countries, particularly throughout the

European region. Demonstrating instances of faster and slower growth patterns, sizable differences are

shown between the first and second, and third classes. Prosperity in countries such as Italy, Portugal

and Spain translate skeletal convergence, where less developed economies in Europe close in upon the

more enriched ones. There are also disparities around core countries of the monetary Union created

in the last century, with Germany facing opposite sides of the spectrum when compared to some other

euro area countries (the highlight being France). The long-standing stability witnessed in the northern

Europe region helps explain the strong position taken by its forming countries in the examined scenario.

In summary, a growth below potential rates is observed for the United Kingdom and the United States.

Mexico, in the second group, is characterized by a high inflation (only comparable to Greece) and a high

GDP that propels the country to the group’s extremity; while Greece, with a very negative trade balance

and leading indicator, and record-high employment rate, appears as a clear outcast.

The results of the CDPCA are reported in Table 4.2 and Fig. 4.3. The three clusters of countries

are also highlighted by three dotted ellipses. The CDPCA was run 750 times to increase the chance to

find the global optimal solution and that result was found 6 times in that time. In the best execution

the algorithm converged after 5 iterations (with convergence tolerance value equal to 10−5). The two

components of the clustering and disjoint PCA explain almost the same part of the variance explained

by the PCA (39% and 38%, respectively).
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Table 4.2: Component loadings for PCA and CDPCA.

Variables PCA loadings CDPCA loadings

Component 1 Component 2 Component 1 Component 2

GDP -0.192 0.700 0 -0.353
LI -0.464 0.305 0 -0.683
UR 0.478 -0.091 0.639 0
IR 0.294 0.592 0 -0.532
TB -0.449 -0.223 0.584 0
NNS -0.482 -0.094 0.613 0

Figure 4.3: Clustering and disjoint PCA results on OECD dataset. Points without labels represent centroids
of clusters. Clusters of countries are highlighted by ellipses.

The first component of the CDPCA is characterized mainly by unemployment rate (18%), net national

savings (16%) and trade balance (15%).Therefore, the components of the PCA and disjoint PCA are

almost the same both in terms of variance explained and of variables most contributing to specify the

components. However, the disjoint PCA clearly shows more homogeneous clusters (between cluster

deviance of CDPCA is ||UȲ||2/||Y||2 = 87% of total deviance, while between cluster deviance of the

tandem analysis is only about 52% of the total deviance). In CDPCA there is a 51% contribution due to

interrelations among UR, NNS, and TB. Note that only leading indicator appears differently from PCA.

The second CDPCA component is characterized by leading indicator (21%), interest rate (13%) and only

slightly by gross domestic product (6%); while 60% contribution is due to interrelations among LI, IR

and GDP.

The classification on the two dimensions defined by the CDPCA model is similar to the one of the

tandem analysis with Australia, Canada and Mexico moving to class 1, and Japan doing the converse.

Touching on the results of factorial k-means, in Table 4.3, the first component is specified by the

main contribution of TB and NNS, while the second component is mainly characterized by GDP, LI
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Table 4.3: Correlation between variables and the two factors specified by the FKM analysis .

GDP LI UR IR TB NNS

Dim 1 -0.177 -0.066 -0.321 0.189 -0.637 0.583
Dim 2 0.587 -0.755 -0.289 -0.419 0.039 -0.033
a Contributions with absolute values larger or equal to 0.3 are highlighted.

and IR. Building a comparison with CDPCA it can be observed that the only rearrangement is in the

way UR contributes somewhat similarly to both dimensions, as it happens with LI for PCA (in tandem

analysis). This ambiguity in the explanation of components causes difficulties in their understanding

and interpretation due to the overlap of the same variables in explaining different factors. Naturally, the

differences of components produce different classifications, Fig. 4.4.

Figure 4.4: Factorial k-means results on OECD dataset. Points without labels represent centroids of clusters.
Clusters of countries are highlighted by ellipses.

The number of clusters for objects can be chosen guided by the indices introduced in the literature.

When speaking of variables the number of partitions should be smaller or equal to the maximum number

of eigenvalues since we are expecting more clusters than latent features. By examining this example it

can be observed that there isn’t a instance of the two groups of variables that possesses more than a

single eigenvalue greater than one. Accordingly, CDPCA has found two clusters of variables, each one

explained by a subset of variables only expressing a component variable. Contrarily, if further separations

are enforced and more clusters of features are necessary then the best outcome goes on to divide the second

group, leaving variable IR alone in the case of a feature division into 3 clusters.

Please note that the orthogonality of the produced components is not enforced or necessarily but

that when the number of variable partitions is accurately selected the correlation between components is

regularly small (this example showcases a correlation of 0.11 between both components).
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4.3.2 Small Round Blue Cell Tumors Data

The gene expression data2 originally described the genomic information of 88 individuals. From those 88

examples five were cases of non-SRBCT occurrences and were removed from the testing samples as we

which to only study subtypes of the same disease. The data included an evaluation of 2308 genes and

encompassed 29 cases of Ewing sarcoma (EWS), categorized as 1, 11 cases of Burkitt lymphoma (BL),

categorized as 2, 18 cases of neuroblastoma (NB), categorized as 3, 25 cases of rhabdomyosarcoma (RMS),

categorized as 4.

Once again, prior to performing tandem analysis the variables were standardized on the columns

representing the 2308 genes. The analysis was carried out computing the first principal components,

classifying patients on the basis of first 21 component scores that explained 71.0% of the total variance.

The results are shown in Fig. 4.5. The k-means algorithm was run on top of the PCA starting from

random partitions and it was necessary to run it for a large number of initial random starts to mitigate

the impact of the presence of several local optima (running 250 times k-means found the present best

solution after 103 runs). The first two components explain a mere 10% and 8% of the total variance.

Both the first and second dimensions of PCA are characterized by a rather homogeneous contribution

of a series of variables, and present a negligible percentage of interrelations contribution. The between

cluster deviance of the optimal solution was equal to 28.8% of the total deviance and provided 23 correct

predictions.

Figure 4.5: Tandem analysis results on the SRBCT dataset. Overlapping clusters make interpretation more
difficult or impossible. Labels refer to k-means classification.

The classification into four groups is not at all intuitive due to the presence of overlapping points.

With the exception of the first cluster whose boundaries could be easily delimited without clashing against

the other partitions, the remaining three clusters all seem to intercept each other.

The CDPCA solution with P = I clusters (corresponding to the case of partitioning only variables)

explains a relevant percentage of the total variance with the same number of components as PCA, but in

such cases the interpretability of the clusters becomes a more serious task. In the new study 4 components

were chosen to facilitate graphical analysis. The algorithm was run 250 times to increase the chance to
2See http://research.nhgri.nih.gov/microarray/Supplement/.
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find the global optimal solution and the optimal solution was found 2 times in those runs, in Fig. 4.6. In

the best solution, the algorithm converged after 9 iterations (with convergence tolerance value equal to

10−3) after 347.78 seconds. The first two components of the clustering and disjoint PCA explain slightly

less than the variance explained by the PCA, with 9% and 7%, respectively.

Figure 4.6: Clustering and disjoint PCA results on the SRBCT dataset. Numbers above points showcase the
missclassifications of even classes, the ones that casted the most doubts in determining the corresponding cluster.

Despite the fact that the components of CDPCA possess rather consistent low scores like what was

witnessed in the PCA components, the disjoint PCA clearly shows more homogeneous clusters (between

cluster deviance of CDPCA is ||UȲ||2/||Y||2 = 83% of total deviance, while between cluster deviance of

the tandem analysis is only about 30% of the total deviance).

In this difficult dataset the classification on the dimensions defined by the CDPCA model is slightly

better than the one of the tandem analysis with 36 correct predictions. The 43.4% accuracy translates a

less than optimal subspace recovery and could be explained by the elliptical cluster shape the algorithm

tends to attribute not corresponding to the real pattern present in the data, and due to the possible

presence of outliers that disturb the classification process.
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This chapter presents two new methods aiming at increasing the interpretability of high-dimensional

data analysis results.

After insurging against the use of tandem techniques, and reviewing the properties of the algorithm to

be extended, two new methods are proposed. The first developed method is the Relaxed Clustering and

Disjoint Principal Component Analysis (RCDPCA), resulting stemming from the inclusion of a fuzzy

model in the object assignment phase of CDPCA. The second method is the Nested Clustering and

Disjoint Principal Component Analysis (NCDPCA), a new pipeline whose purpose is to bridge the gap

between integrated approaches and uncovering information hidden in sublayers of data by maximizing

the between cluster deviance of the cluster and subclusters instances.

5.1 Relaxed CDPCA

The RCDPCA algorithm addresses the possibility of an object having characteristics associated with one

or more clusters by instilling a fuzzified object stratification at each step of the iterative and converging

process. The algorithm remains interested in maximizing the between cluster deviance by virtue of a

greedy search and retains the properties of the work introduced in Chapter 4.

In the genome and DNA data studied in the development of these methods the focus was not on

assuming or wishing to test a theoretical model of latent factors causing the observed variables and thus

factor analysis was not considered. Instead, and with the interest of simply reducing the correlated

observed variables to a smaller set of important independent composite variables, the use of PCA as the

solution for the dimensionality reduction problem is retained, as it is an adequate approach to the task

at hand.

The k-means implementation discussed in the Chapter 2 comes with its hiccups. Considering, for

example, a symmetric dataset with two clusters and a point in the middle equidistant to the prototype of

both of them, hard k-means assigns a not very intuitive crisp label to the point in question. Other prop-

erties also need consideration: hard k-means tends to get stuck in local minimum and has the necessity of

conducting several runs with different initializations [78] or needing sophisticated initialization methods

like the Latin hyper cube sampling [79], and the crisp memberships prohibit ambiguous assignments -

when clusters are badly delineated or overlapping, there is a need to relax requirement uip ∈ {0, 1}.

Understanding Soft Clustering

Soft or fuzzy clustering allows gradual memberships of data points to clusters in [0, 1], providing the

flexibility to express data point that can belong to more than one cluster. These membership degrees

offer a finer degree of detail of the data model by expressing how ambiguously/definitely a certain point

xi should belong to a certain cluster Cp. The solution spaces gain the form of fuzzy partitions of

X = {x1, ...,xI}. A probabilistic cluster partition is formally defined in Def. 5.1.
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Definition 5.1. Probabilistic Cluster Partition.

Let X = {x1, ...,xI} be the set of given objects and let P be the number of clusters (1 < p < I)

represented by the fuzzy sets ΓCp , with p = 1, ..., P . Then we call U = (uip) = (ΓCp(xi)) a

probabilistic cluster partition of X if

I∑
i=1

uip > 0, ∀ p ∈ {1, ..., P}, and (5.1a)

c∑
p=1

uip = 1, ∀ i ∈ {1, ..., I} (5.1b)

hold. The uip ∈ [0, 1] are interpreted as the membership degree of datum xi to cluster Cp relative

to all other clusters.

Constraint (5.1a) guarantees that no cluster is empty - a requirement in classical cluster analysis. The

second constraint states that the sum of membership degrees must be one for each xi: each datum receives

the same weight in comparison to all other data, making the groups exhaustive. The combination of these

two conditions imply that no cluster can contain full membership of all data points and that membership

degrees for a given datum resemble probabilities of being member of its corresponding cluster.

Let us develop a clear analytical understanding of the fuzzyfied version of the hard clustering method

used in CDPCA, which describes a partition of X as a probability oriented problem. The fuzzy clustering

criterion we discuss generalizes the within groups sum of square errors function Jf , initially reported by

Dunn in [80] as an algorithm akin to hard c-means. Shortly thereafter, Dunn’s function became a special

case of the first infinite family of fuzzy clustering algorithms based on a least-squared errors criterion [81].

Definition 5.2. Fuzzy C-Means Functional.

Let Jf : Mfc × Rcp → R+ be

Jf (U, ȳ) =

I∑
i=1

c∑
p=1

(uip)
m(dip)

2 (5.2)

where U is a fuzzy c-partition of X and uip denotes the grade of membership of the i-th data

pairs in the p-th cluster;

ȳ = (ȳ1, ȳ2, ..., ȳc) ∈ Rcp with ȳp ∈ RP

is the cluster center or prototype of up, 1 ≤ p ≤ c;

(dip)
2 = ||xi − ȳp||2 and || · ||

is any inner product induced norm on Rp; and

weighting exponent m ∈ [1,∞[.
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The original Dunn’s functional is obtained by setting m = 2 in Eq. (5.2). Inspecting Jf reveals

that the distance between all data points xi and a fuzzy prototype ȳp is considered as the measure of

dissimilarity, dip = ||xi − ȳp||; the squared distance is then weighted by (uip)
m = (up(xi))

m, the m-th

power of xi’s membership in the fuzzy cluster up. Because each term of Jf is proportional to (dip)
2, Jf

is a squared error clustering criterion, and its least-squared error stationary points are solutions of

min
Mfc×Rcp

{Jf (U, ȳ)}. (5.3)

An infinite family of fuzzy clustering algorithms - one for each m ∈ [1,∞[ - is attained via necessary

conditions for solutions of (5.3). The basic theorem follows.

Theorem 5.1.

Assume || · || to be inner product, m ∈ [1,∞[, let X have at least P < I distinct points, and define

∀ i the sets

Ii = {p|1 ≤ p ≤ P ; dip = ||xi − ȳp|| = 0},

Īi = {1, 2, ..., P} − Ii,

then (U, ȳ) ∈Mfc × Rcp may be globally minimal for Jf only if

Ii = ∅ ⇒ uip =
1∑c

j=1

(
dip
dij

)2/(m−1)
(5.4a)

or

Ii 6= ∅ ⇒ uip = 0 ∀ p ∈ Īi and
∑
p∈Ii

uip = 1, (5.4b)

and

ȳp =

∑I
i=1(uip)

mxi∑I
i=1(uip)m

∀ p. (5.4c)

One obtains (5.4a) by fixing ȳ ∈ Rcp and applying Lagrange multipliers to the variables uip, Ap-

pendix A. This application requires one technical maneuver: we relax U so that the columns of U can

be uncoupled and minimized term by term. Equation (5.4b) is the necessary alternate form for mem-

berships of xi when ∃ i that dictates dip = 0. In this particular case, and whenever this "singularity"

occurs, it is imposed that xi must have no membership in any cluster up where dip > 0. The requisites

for the resolution of the algorithmic singularity in the second task of step 1 of Alg. 5.1 found below are

now stated. We make note that the referred singularity xi = ȳp, ∃ i, p hardly ever occurs in practice,

since computerized round offs usually preclude this eventuality. Straightforwardly, (5.4c) is the necessary

condition derived via unconstrained optimization of Jf with fixed U and having ȳp as variables.

The fuzzy c-means clustering algorithm is just a set of iterations through the necessary conditions (5.4),
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constraints that hold for any inner-product norm metric, specifically a positive-definite matrix A that

induces a norm via the weighted inner product

〈x,y〉A = xTAy =

z∑
i=1

z∑
j=1

xiaijyj .

Emphasizing the dependence of Jf on the norm defining matrix A yields

Jf (U, ȳ,A) =

I∑
i=1

c∑
p=1

(uip)
m(xi − ȳp)

TA(xi − ȳp). (5.5)

Algorithm 5.1. Fuzzy C-Means.

1: Fix number of clusters P, 2 ≤ p < I, and fix m, 1 ≤ m < ∞. Initialize U(0) and at iteration

l = 0, 1, 2,...,:

- calculate c fuzzy cluster centers ȳ
(l)
p with (5.4c) and U(l).

- update U(l) using (5.4a, 5.4b).

- compare U(l) to U(l+1): if ||U(l+1) −U(l)|| < εL stop; otherwise return to first step of 1.

A more careful examination of Alg. 5.1 reveals that the non-singular case of m = 1, with the Euclidean

norm Rp, transforms this procedure in the hard c-means algorithm [82].

Traditional fuzzy c-means requires a set of input parameters including p, m, U(0), || · ||A, and εL.

There is an infinite family parametrized by m for each A selection - as m→ 1 fuzzy c-means theoretically

converges to the hard c-means solution, where Jf has the added variable A. Transversely, as m → ∞,

one sees uip in (5.4a, 5.4b) → (1/P ) ∀ p, i, so ȳp → µ the centroid of X ∀ p. Thus when m approaches

its maximal value the only optimal pair for Jf is (Ū, µ) = (centroid of Mfc, centroid of X), and Jf → 0.

Above all, the larger m is the "fuzzier" are the membership assignments; and contrariwise, as m → 1,

the fuzzy c-means solutions become hard. The choice of m necessary to implement Alg. 5.1 controls

the extent of membership sharing between fuzzy clusters in X in the form of a weighting exponent; its

optimal choice is however not supported by any theoretical basis.

Addressing the Artificial Parameter

It is needless to say that the FCMmethod casts itself as a wondrous method mainly due to the introduction

of the magical number m, but certain questions arise:

1. What is the physical meaning of the parameter m?

2. And what valid criterion can be used to decide the membership assignments?

To shed light upon this questions the notion of Maximum-Entropy Inference (MEI) is introduced: an

unbiased inference method provided by information theory, more strictly, Shannon’s concept of "amount

of information" [83] for ill-defined problems on the basis of the given information. The MEI problem’s
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structure is one of finding a probability assignment or membership function uip which avoids bias while

agreeing with whatever information is given. The problem can be formally presented as

max

{
−

I∑
i=1

c∑
p=1

uip lnuip

}
, (5.6)

subject to c1, c2, ..., cm, the m constraints of the given information. Defining the local loss function as

the within-group sum of squared error

L =

I∑
i=1

c∑
p=1

uip(dip)
2, (5.7)

the algorithm is set to minimize the objective function

Jf (U, ȳ) =

I∑
i=1

c∑
p=1

uip(dip)
2 + γ

I∑
i=1

c∑
p=1

uip lnuip, (5.8)

where uip satisfies the conditions

0 ≤ uip ≤ 1 ∀ i, p, (5.9a)

0 <

I∑
i=1

uip < I ∀ p, (5.9b)

c∑
p=1

uip = 1 ∀ i. (5.9c)

The functional (5.8) can simultaneously minimize the within cluster dispersion as it forces uip to

minimize the weighted sum of squared distances, and maximize the negative weight entropy to determine

clusters to contribute to the association of objects. The first term represents the cost function of the

standard k-means algorithm, and is complemented by a second term that forces the maximization of the

entropies of the distributions over the clusters described by uip. This way uip naturally distances itself

from a crisp assignment, which is the minimum entropy setup.

The fuzzy clustering problem with maximum-entropy inference becomes one of finding a set of pro-

totypes which minimizes (5.8) and a membership assignment which satisfies constraints (5.9c). To solve

Eq. (5.6) subject to constraints (5.9) the alternating minimization procedure between membership matrix

U and cluster center matrix ȳ can be applied to (5.8), resulting in the solutions

uip =
e−

d2ip

2σ2∑c
j=1 e

−
d2
ij

2σ2

∀ i, p,
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ȳp =

∑I
i=1 uipxi∑I
i=1 uip

∀ i,

where σ is the Lagrangian multiplier from (5.7), Appendix B.

The entropy regularization allows us to avoid using the artificial fuzziness parameterm, replaced by the

degree of fuzzy entropy γ, related to the concept of temperature in statistical physics, 2σ2. An interesting

property and advantage of a membership regularization approach is that the prototypes are obtained as

weighted means with weights equal to the membership degrees (rather than to the membership degrees

at the power of m as is for the fuzzy c-means).

Input

Besides the input dataset X, the optional specification of a ground truth classification vector, and the

selection of the attributes to be considered through parameter fixAtt (each position of the vector of

length J contains the selected q variable cluster) this method possesses several input parameters: P , the

number of clusters of objects; Q, the number of clusters of variables; ent = γ, the (positive) relaxation

indicator, tol, the convergence tolerance; maxit, the maximum number of iterations; and r, the number

of runs of the algorithm to achieve the final solution. The number of clusters chosen is unequivocally

problem dependent.

Output

The RCDPCA is a soft classifier and the output consists of not only the partitions of objects and variables,

but also relevant additional information such as the loop for computing the best solution, the component

loading and score matrix, the centroids in the reduced space, the objective function’s value, the between

cluster deviance (and deviance over the total variability), a table containing the final classification and

the error norm of the obtained RCDPCA model.

Algorithm

In Alg. 5.2 we have the sequence of operations needed to compute each object’s relaxed assignment into

clusters. First we compute the baseline object partition uip according to a distance metric. Then for

each individual feature, we test non-null entries into each variable subset and extrapolate the arrange-

ment that maximizes the established functional and guarantees the most interpretable subspace layout.

The convergence to an objective function value lower than a defined threshold culminates in the final

dimensionality reduction.
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Algorithm 5.2. Relaxed CDPCA.

Require: X: input dataset, P : number of object clusters, Q: number of variable clusters,...
Ensure: data classification.
1: for loop in 1 : r do
2: Xs←− Scale(X) . Standardize columns and center data
3: iter ←− 0 . Iteration number
4: U ←− RandMat(I, P ) . Random initialization of object assignment matrix
5: V ←− RandMat(J,Q) . Random initialization of variable assignment matrix
6: if fixAtt = ∅ then
7: indexSelectFree←− 1 : J . Unassigned variables
8: else
9: ApplyFixAtt(V, fixAtt) . Variables are fixed to intended subset

10: indexSelectFree←− which(fixAtt == 0)

11: end if
12: X.bar ←− (UTU)−1UTXs . Identify centroids in variable space
13: X.group←− UX.bar . Object identified by its centroid
14: for j in 1 : Q do
15: A[, j]←− PMEigen(X.group, V ) . Power Method to calculate the largest eigenvalue

16: end for
17: Y.bar ←− X.barA . Centroids in reduced variable space
18: Fmax ←− (UY.bar)T (UY.bar)

19: conv ←− 2 · tol
20: while conv > tol do
21: iter ←− iter + 1

22: Y ←− XsA . Component score matrix
23: U ←− FuzzyEnt(Y, P, ent) . Reset and update U through the regularized fuzzy method
24: Repeat steps 12, 13 . Update structure X

25: for j in indexSelectFree do . Iterate in the search for the best V and A

26: V [j, ]←− 0

27: for g in 1 : Q do
28: A←− PMEigen(X.group, V, g) . Recalculate the largest eigenvalue
29: if (UX.barA)T (UX.barA) > Fmax then
30: Fmax ←− (UY.bar)T (UY.bar)

31: posMax←− g

32: end if
33: end for
34: V [j, posMax]←− 1 . Best subset for feature j

35: end for
36: Repeat steps 17, 22 . Update structure Y

37: conv ←− (UY.bar)T (UY.bar)− Fmax

38: if conv > tol then . Check end loop conditions
39: Fmax ←− (UY.bar)T (UY.bar)

40: if iter == maxit then break end if
41: else
42: break
43: end if
44: end while
45: end for
46: return ObjRCDPCA ←− BestLoop() . Construct object with variables of the best run
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Comments

This method extends the ideas of the Clustering and disjoint PCA. Being a fuzzy procedure its output

is more flexible and intuitive in terms of analysis as it allows the definition and quantification of class

membership adjusted through a relaxation parameter. The entropy regularization approach alleviates

the weight computation to determine a prototype, but consequently transforms the assignment matrix

entries to being based directly on distances instead of the more easily understandable distance ratios used

in the original fuzzy construction.

5.2 Nested CDPCA

Taking inspiration in the automatization of the classification of objects, NCDPCA allows to unearth

knowledge hidden in a secondary layer of data. The method projects the integrated approach of CDPCA

in a cyclical manner, digging deeper and deeper into the behaviors and sub-behaviors that the data points

characterize. Figure 5.1 provides a visual display of the nested process focusing on two layers determined

by the same functional.

Figure 5.1: Illustrative graphical display of the NCDPCA algorithm. In this particular case, the first partition
reveals six clusters represented by different colors. In the second phase of the nested process three of the clusters

are reevaluated and further divisions can be retrieved for analysis.

Input

Similar to the RCDPCA method, it takes one additional input parameter in the form of a vector K that

specifies the number of clusters for each partition obtained in the first layer (initial CDPCA run).

Output

As a nested process it returns a list of CDPCA objects containing the information already described in

the first proposed methodology. Each object on the list arises from each run of the base algorithm.
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Algorithm

The method can be implemented following Alg. 5.3. Firstly, we compute the first layer partitions and

sequentially advance and examine each individual cluster originated in the first phase of the program.

Algorithm 5.3. Nested CDPCA.

Require: X: input dataset, P : number of object clusters, K: number of subclusters,...

Ensure: data classification.

1: secondLayer ←− vector(”list”, P + 1) . Carries subclusters information

2: for group in 0 : P do

3: if group == 0 then

4: firstLayer ←− CDpca(data, class, fixAtt,Q, P, ...)

5: else

6: data←− data[which(firstLayer$U [, group] == 1)

7: class←− class[which(firstLayer$U [, group] == 1)]

8: P ←− K[group]

9: secondLayer[[group]]←− CDpca(data, class, fixAtt,Q, P, ...)

10: end if

11: end for

12: subClass←− numeric(nrow(data)) . Build second layerś classification vector

13: for group in 1 : P do

14: if K[group] == 1 then

15: subClass[which(firstLayer$U [, group] == 1)]←− max(subClass) + 1

16: else

17: for subCluster in 1 : K[group] do

18: firstData←− which(firstLayer$U [, group] == 1)

19: secondData←− which(secondLayer[[group]]$U [, subCluster] == 1)

20: subClass[firstData[secondData]]←− max(subClass) + 1

21: end for

22: end if

23: end for

24: secondLayer[[P + 1]]←− subClass . Attach new full classification to list

25: return list(firstLayer, secondLayer)
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In this chapter the main results obtained experimentally are presented and compared with the results

of other approaches.

Cancer classification is intimately connected to cancer treatment and enhancements in this area con-

tribute significantly to advances in patient recovery processes. Today, and always, the main challenges of

cancer treatment are summed as the creation of target therapies to pathogenetically distinguish tumor

types, and to maximize the treatment’s efficacy and minimize its toxicity. Classically the focus has been

on the study of the morphological appearance of a tumor but the fact that this analysis links similar

histopathological appearances to different clinical courses with different responses to therapy is extremely

limiting. In a few cases, such has the SRBC tumors studied in Chapter 4, this clinical heterogeneity has

been "corrected" by dividing morphologically akin tumors into subtypes with distinct pathogeneses (in

the mentioned case, the tumors are currently subclassified on a molecular level by Ewing sarcoma, Burkitt

lymphoma, neuroblastoma, rhabdomyosarcoma, and other types). For many more tumors, relevant sub-

classes are likely to exist but have yet to be properly defined by molecular markers.

The disease’s classification has been hard to accomplish partly because it has, on a historical level,

relied on specific biological insights, rather than unbiased approaches for recognizing disorder subtypes.

In this chapter we rely on a systematic approach based on global gene expression analysis through

simultaneous expression monitoring of hundreds of genes using DNA microarrays, escaping the traditional

descriptive rather than analytical microarray studies, and focusing on cell culture rather than primary

patient material, in which genetic noise can obfuscate underlying reproducible expression patterns.

6.1 Leukemia Data

This clinical dataset3 contains gene expression data from the leukemia microarray study of Golub et

al. [84] and can be easily accessed from the R package multtest. The data contained 38 cases of human

acute leukemias, 27 of which were acute myeloid leukemia (AML), categorized as 1, and the remaining

11 acute lymphoblastic leukemia (ALL), categorized as 2. These two classes are particularly relevant

as their identification is critical for successful remission; chemotherapy regimens for ALL therapy differ

significantly from AML (and vice versa), and although recovery can be accomplished cure rates are

markedly diminished, and unwanted toxic effects are realized.

After scaling and centering 3051 genes the benchmark analysis was carried out computing the first

principal components and classifying patients on the basis of the first 22 component scores explaining

approximately 82% of the total variance. The results are shown in Fig. 6.1. The k-means algorithm was

performed on the first two PCA starting from random partitions 500 times and found the present optimal

solution with 13.6% between cluster deviance after 409 runs. The first two components explain 15.6%

and 9.4% of the total variance, low scores anticipated due to the scale of the matrix handled.

3Find more at http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.cgi?paper_id=43.
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Figure 6.1: Tandem analysis. Classification of leukemia patients represented on the first two principal
components.

The witnessed separation of the two groups is forced. No overlap occurs by definition but the

plane responsible for the stratification appears to have a short margin to the flexible classification

boundaries - another plausible explanation for the 8.4% of tumors correctly attributed in this test (ac-

counting for 32 wrong labels). Although with such low percentages of correct classification estimation

one wonders the validity of the classifier.

Without knowledge on the conditions of the data, and the disposition of the residuals, it is wise

to attempt a multitude of angles and methods to extract the widest range of pertinent information.

In Fig. 6.2 and Fig. 6.3 the integrated approaches studied in depth in Chapter 3 are revisited in this

experiment with a distinct parameter Q of 10 for RKM and FKM to attempt to maintain a total variance

explanation similar to the tandem analysis one and retain the validity of the comparison. The between

cluster deviance of the first method is 78.4% and its output’s sensitivity increase led to a jump to 31.6% of

proper labeling (accounting for 26 wrong decisions). In the case of FKM a subspace was found such that

the data points were aligned and were perfectly stratified into two clusters (the error function reached its

lower bounded limit and 100% within cluster deviance was observed in the projected space) product of an

Figure 6.2: Classification of leukemia patients represented on the first two dimensions of the reduced k-means
analysis.

arbitrary response. The presence of all the variables in the making of the new feature space culminated

in the imposition of null subspace residuals and resulted in the data points being tidied up into a speckle.

The end result is a 68.4% accuracy in classification, but a model not very flexible to further object
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introductions into the system.

Figure 6.3: FKM clustering of leukemia patients in low dimensional space.

The results of the Relaxed CDPCA are reported in Fig. 6.4 and follow the convergence observed in

regular CDPCA (not shown to avoid redundancy). The algorithm was run 150 times to increase the

chance to find the global optimal solution. This optimal response was found 1 time in the 5th run, with

the algorithm converging after 5 iterations, taking 310.5 seconds (against 179.3 seconds of an equivalent

CDPCA execution). The two components of the relaxed clustering and disjoint PCA explain a low

variance of approximately 5.2% and 5.0% respectively, and demonstrate high correlation, incentivizing

the correction of the number of clusters of objects and variables, and also the occurrence of an initial

test to assess the impact of similarly correlated variables in the definition of the components. Despite the

Figure 6.4: Fuzzy model incorporated in CDPCA applied to leukemia data. On the left the real classification
with blue symbolizing the first class and red the second; On the right RCDPCA classification with brighter

colors corresponding to less certain affirmations of class memberships.

fact that the components of RCDPCA denote similar variance explanation to the one seen in the other

processes, the disjunction of the feature components clearly shows more distinctive clusters and presents

a between cluster deviance of ||UȲ||2/||Y||2 = 79% of total deviance. In this dataset the classification

on the dimensions defined by the RCDPCA model is a step above to the previous ones with 28 correct
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predictions, being limited however by the 27% total variance explained. The 73.7% accuracy translates

a less than optimal subspace recovery and can be explained by the deficient definition of Cluster 1 and

due to the proximity of label 2’s with the first partition.

These results demonstrate the feasibility of cancer classification based solely on the monitoring of

gene expression and suggest a strategy for uncovering and predicting other types of cancer divisions

independently of previous biological knowledge.

6.2 SRBCT Data Reevaluation

The objective of this test was to consolidate the theoretical advances expressed in the previous chapter.

For that, we reevaluated the Small Round Blue Cell Tumors dataset for further analysis, Figs. 6.5 and 6.6.

RCDPCA took approximately 7 iterations to converge and brought in a between cluster deviance

of 83%, explaining 8.0% and 6.6% of the total variance in the first and second component respectively,

while taking 334.3 seconds. Assessing the color scheme we verify the confusion resides mainly in the

even number classes, 2 and 4, the classes that produced the biggest analysis divergence in Chapter 4.

The incorporation of a palette facilitates further analysis with the identification of a "danger zone" in

the subspace and additional patients will be evaluated with more considerations. Space is opened for

a specific reevaluation of this area using the Nested framework. The second application consisted of a

Figure 6.5: Relaxed clustering and disjoint PCA results on the SRBCT dataset.

tandem approach of PCA + fuzzy c-means and translates all the issues discussed in the previous chapters.

Even with adjusted "fuzziness" parameters the doubts cast by this test are too much to bare and the

system evaluation is dimmed unusable.

Figure 6.6: Results on the SRBCT dataset using the traditional tandem approach.
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6.3 Hormonal Associated Cancer Discrimination

To evaluate the capacities of the nested methodology a special data set was assembled, combining en-

trances of several instances of breast and prostate cancer (hormonal), and melanomas, all belonging to the

TCGA data repository. The three initial sets of collected cancer data were composed of two-dimensional

arrays of 1204 positive cases of breast cancer patients over 19660 genes, 547 cases of prostate cancer

over 19660 genes, and finally 84 instances of melanoma examples over 52746 genomes. To obtain a valid

genomic matrix the genes were scaled, intercepted, and we were left with 1835 patients studied across

19435 genes.

This configuration allowed for the direct appraisal of whether this two tumorous types were identifiable

through genetic makeup analysis, and permitted the appraisal of the clarity of the partition between three

tumor subtypes perhaps carrying similar global pathogenetically characteristics.

Figure 6.7: Nested clustering and disjoint PCA results on the TCGA custom cancer dataset. Real
classification on the left; first layer partition at the middle; and second layer partition represented in the

computed feature space on the right. Note that not all objects are drawn (removed to facilitate the perception
of the clusters’ overlap).

Visible in Fig. 6.7, the proposed method achieved a between cluster deviance of 92.1% in an average

of 4 iterations for the first stratification of data and 86.0% between cluster deviance after 6 iterations in

the following sublayer analysis, explaining practically 29% of the total variance with 2 components. The

colors of the middle and right subfigures do not have any particular meaning and serve only as a visual

guide to better distinguish the separation of the second sublayer displayed in the feature space determined

by the initial layer analysis. Once again the components appear to have high correlation. We can see

now that there may be merit in discarding variables thought to be measuring the same underlying (but

"latent") aspect of a collection of variables, because including the nearly-redundant variables can cause

the PCA to overemphasize their contribution. It should be abundantly clear that setting aside variables
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known to be strongly correlated with others can have a substantial effect on the PCA results.

These results are considered extremely positive when reflecting on the amount of genomic information

condensed in this figure. We see a proper evaluation of the first layer as the non-hormonal melanoma

cases are well-condensed and far from the remaining points. In the second layer the reevaluation of the

selected points in a new subspace, Fig. 6.8, allows for the reinterpretation of the amalgam of points that

is shown above. The linear recombination of the variables to best suit the inspection of the sublayer

allowed the labeling clarification of objects fairly overlapped with one another.

All the melanoma cases were precisely estimated while, considering 1 as the positive label, the second

grouping witnessed a 96.5% of recall (the fraction of relevant instances that have been retrieved over the

total amount of relevant instances) and 91.3% precision (the fraction of relevant instances among the

retrieved instances), summarized in a 87.5% of correct categorizations.

Figure 6.8: Detailed view of the second partition decision boundaries and subspace rearrangement.

Further assessments were made under the same conditions but following a cyclical tandem analysis

path. The assessment continuously and stressfully collided against an inability to separate even the

first obvious segregation. In the end, a between cluster deviance of 33.8% occurred, with the first two

components explaining approximately 29% and 10% of the data variance.

Figure 6.9: Nested tandem analysis fails to separate hormonal from non-hormonal tumors.
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Results show that an integrated solution is an effective mechanism to calculate a new linear subspace

arrangement of the feature space and to categorize data in the reduced pace. The properties of the control

function that models the system and clustering generated can be altered by an appropriate choice of the

objective function weights. Results show that the methods can be applied successfully to a wide range of

systems with differing characteristics. In higher dimensional data there is space for a judgment call based

on the analytical objectives and knowledge of the data to determine possible pre-processing of data prior

to running the referred integrated approaches.

Results also show that the relaxed classification of the points is an effective way of combating ambiguity

as it retains the variance explained as well as the rigid CDPCA, although it may require a trade-off with

the speed of computation. Contrary to what one could expect, the results presented showed that the

time consumption related to the heavier computations of a relaxed object attribution matrix was not

severe (taking up to 3 more times than the CDPCA execution in our simulations) and does not hamper

the validity of the application of the new methodologies.

7.1 Achievements

A fuzzy model is developed and introduced in the remaining CDPCA computations, capturing the objects’

dynamics and considering the classification nuances required for a fairer diagnosis of the situation. The

experimental data are in agreement with the initial considerations. The accuracy of the model allows

for the definition of well stratified groups and a more hassle-free perception of the behavior in the test

environment. The maximum-entropy approach of the fuzzy model retains the characteristics of the

previously available solution adding flexibility and much needed mathematical features that support the

analysis, at the cost of increased algorithmic running time. It offers improved stability over other methods

such as FKM which failed to recover the intended subspace in several instances.

A technique is proposed and used to find groupings in a sublayer of the data. The equilibrium

achieved with this system has improved variance over the obtained with the tandem solution. The

general framework can be extended to benefit any methodology and may be used in the future in a wide

set of applications.

7.2 Future Work

During the development of this work, several divergent lines of research or possible analysis were identified.

However, given the time limitations for this thesis development, they have not been addressed:

• The dimension-reduction step can be reevaluated and factor analysis can be incorporated if the

desired analysis warrants it, i.e. when we wish to assume or to test a theoretical model of latent

factors causing the observed variables;

• Other fuzzy techniques can be used to model the clustering structure, which can be particularly

useful when the structure appears to be non-spherical, for example through density-based solutions;

• Promote outlier desensitization in the methodology - analyze the introduction of an additional
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cluster to combat noise and outlier influence. The cluster is not to be explicitly associated to any

prototype, and its center to be at a constant distance delta to all data points;

• CDPCA maximizes the between cluster deviance of the reduced space unconditionally to the within

variance. It would be alluring to find the optimal solution by imposing a certain within cluster

deviance or by attempting a convex combination of both the between and within cluster deviances

when constructing the cost function. Following a similar line of thought, a convex combination of

hard and fuzzy c-means may be added to contribute to the objective function;

• A systematic study of the effects of reducing the initial feature pool through the use of neighborhood

or correlation based methods;

• A study of the limits of performance, when missing data is present.
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A
Fuzzy C-Means Functional

Optimization

A-1



This appendix provides the proof of the Lagrangian multiplier solution to the fuzzy c-means objective

function.

Proof. Fix ȳ ∈ Rcp and define gm(U) = Jf (U, ȳ) for any U ∈ Mfco. Since U is degenerate - its

columns are independent - and therefore

min
U∈Mfco

= min
U∈Mfco

{ I∑
i=1

c∑
p=1

(uip)
m(dip)

2

}

=

I∑
i=1

[
min

ui∈conv(Bc)

{ c∑
p=1

(uip)
m(dip)

2

}]
(A.1)

where

conv(Bc) =

{
ui ∈ Rc

∣∣∣∣ c∑
p=1

uip = 1;uip ≥ 0

}
.

The solution of (A.1) is achieved with Lagrange multipliers. For each term, let

g(ui) =

c∑
p=1

(uip)
m(dip)

2

and let its Lagrangian be

Fi(λ,ui) =

c∑
p=1

(uip)
m(dip)

2 − λ
( c∑
p=1

uip − 1

)
,

where (λ,ui) is stationary for Fi only if ∇λ,ui)Fi(λ,ui) = (0, θ ∈ Rc). Setting this gradient equal to zero

leads to

∂Fi
∂λ

(λ,ui) =

c∑
p=1

uip − 1 = 0, (A.2a)

∂Fi
∂uts

(λ,ui) =

[
m(uts)

m−1(dts)
2 − λ

]
= 0. (A.2b)

From this,

uts =

[
λ

m(dts)2

]1/(m−1)

. (A.3)

Using (A.2a),

c∑
l=1

utl =

c∑
l=1

(
λ

m

)1/(m−1)[
1

(dtl)2

]1/(m−1)

=

(
λ

m

)1/(m−1){ c∑
l=1

[
1

(dtl)2

]1/(m−1)}
= 1.
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Thus,

(
λ

m

)1/(m−1)

=
1∑c

l=1

(
1

(dtl)2

)1/(m−1)
.

Returning to (A.3),

uts =
1∑c

l=1

[
1

(dtl)2

]1/(m−1)

[
1

(dts)2

]1/(m−1)

=
1∑c

l=1

(
dts
dtl

)2/(m−1)
.
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B
Regularization Approach to Fuzzy

C-Means Functional
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This appendix provides the proof of the Lagrangian multiplier solution to the fuzzy c-means objective

function with entropy regularization.

We derive the update rule for the membership degrees in the usual way (cf. the preceding appendix)

by incorporating them with Lagrange multipliers into the objective function. The resulting Lagrange

function is

Fi(λ,ui) =

c∑
p=1

uip(dip)
2 + γ

c∑
p=1

f(uip)− λ
( c∑
p=1

uip − 1

)
,

where λ are the Lagrange multipliers, one per constraint. Since a necessary condition for a minimum of

the Lagrange function is that the partial derivatives w.r.t. the membership degrees vanish, we obtain

∂Fi
∂λ

(λ,ui) =

c∑
p=1

uip − 1 = 0, (B.1a)

∂Fi
∂uts

(λ,ui) = (dts)
2 − λ+ f

′
(uts) = 0. (B.1b)

Developing (B.1b) we arrive at

uts = f
′−1

(
λ− d2

ts

γ

)
, (B.2)

where ′ denotes taking the derivative w.r.t. the argument of the function and f
′−1 denotes the inverse of

the derivative of the function f .

In analogy to Appendix A, constraints on the membership degrees are now exploited to obtain

c∑
p=1

uip =

c∑
s=1

f
′−1

(
λ− d2

ts

γ

)
= 1.

This equation has to be solved for λ and the result has to be used to substitute λ in (B.2). In order to do

so, we introduce the exact form of the regularization function f . With f(uts) = uts lnuts we have that

f
′
(uts) = 1 + lnuts, and therefore F

′−1(y) = ey−1. Using the latter in the formulas obtained above for

deriving the update rule for the membership degrees yields

uts =
e−

d2ts
2σ2∑c

j=1 e
−
d2
tj

2σ2

. (B.3)

It should be noted that f
′
(uts) = 1 + lnuts implies f

′
(1) − f ′

(0) = ∞; Despite the fact that Shannon

entropy regularization always yields graded assignments this drawback is less harmful here because e−
d2ts
2σ2

is much “steeper” than (dts)
2 hence being less prone to producing undesired results.
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